

Fabric OS

Procedures Guide

Supporting Fabric OS v4.2.0

Supporting SilkWorm 24000, 12000, 3900, 3850 and 3250

Publication Number: 53-0000518-04 Publication Date: 3/15/2004 Copyright © 2003-2004 Brocade Communications Systems, Incorporated.

ALL RIGHTS RESERVED.

Publication Number: 53-0000518-04

Brocade, the Brocade B weave logo, Secure Fabric OS, and SilkWorm are registered trademarks of Brocade Communications Systems, Inc., in the United States and/or in other countries. FICON is a registered trademark of IBM Corporation in the U.S. and other countries. All other brands, products, or service names are or may be trademarks or service marks of, and are used to identify, products or services of their respective owners.

Notice: The information in this document is provided "AS IS," without warranty of any kind, including, without limitation, any implied warranty of merchantability, noninfringement or fitness for a particular purpose. Disclosure of information in this material in no way grants a recipient any rights under Brocade's patents, copyrights, trade secrets or other intellectual property rights. Brocade reserves the right to make changes to this document at any time, without notice, and assumes no responsibility for its use.

The authors and Brocade Communications Systems, Inc. shall have no liability or responsibility to any person or entity with respect to any loss, cost, liability, or damages arising from the information contained in this book or the computer programs that accompany it.

Notice: The product described by this document may contain "open source" software covered by the GNU General Public License or other open source license agreements. To find-out which open source software is included in Brocade products, view the licensing terms applicable to the open source software, and obtain a copy of the programming source code, please visit *http://www.brocade.com/support/oscd*.

Export of technical data contained in this document may require an export license from the United States Government.

Brocade Communications Systems, Incorporated

Corporate Headquarters

1745 Technology Drive San Jose, CA 95110 T: (408) 487-8000 F: (408) 487-8101 Email: info@brocade.com

Asia-Pacific Headquarters

Shiroyama JT Trust Tower 36th Floor 4-3-1 Toranomon, Minato-ku Tokyo, Japan 105-6036 T: +81 35402 5300 F: +81 35402 5399 Email: apac-info@brocade.com

European Headquarters

29, route de l'Aeroport Case Postale 105 CH-1211 Geneva 15, Switzerland T: +41 22 799 56 40 F: +41 22 799 56 41 Email: europe-info@brocade.com

Latin America Headquarters

5201 Blue Lagoon Drive Miami, FL 33126 T: (305) 716-4165 Email: latinamsales@brocade.comh

Document History

Document Title	Publication Number	Summary of Changes	Publication Date
Fabric OS Procedures Guide v3.0/4.0	53-0000183-02	n.a.	March 2002
Fabric OS Procedures Guide v4.0.2	53-0000183-03	n.a.	September 2002
Fabric OS Procedures Guide v4.1.0	53-0000518-02	n.a.	April 2003
Fabric OS Procedures Guide v4.2.0	53-0000518-03	 Several chapters about licensed features were added. Chapter 4, "Downloading Firmware," was heavily revised to correct errors and reorganize. Chapter 14, "Updating the Switch PID Format," was heavily revised to reflect the new Extended Edge PID format. 	December 2003
		Information on the QuickLoop feature was removed. OS version levels updated, and various edits.	

The following table lists all versions of the Fabric OS Procedures Guide, v4.2.0.

Contents

About This Document

How This Document Is Organized	xxi
Supported Hardware and Software	xxii
What's New in This Document.	xxiii
Document Conventions.	xxiii
Text Formatting	xxiv
Notes, Cautions, and Warnings	xxiv
Additional Information	xxiv
Brocade Resources	xxiv
Other Industry Resources	XXV
Getting Technical Help	XXV
Document Feedback	xxvi

Chapter 1 Initial Configuration

Connecting Through the Serial Interface	1-1
Connecting to the Switch	1-2
Changing the System Passwords	1-3
Setting the Boot PROM and Recovery Passwords	1-4
Customize the Switch Name	1-6
Managing Licensed Features	1-8
Generating License Keys	1-8
Activating a License	1-9
Verifying License Activation	1-9
Configuring Fabric Parameters	1-10
Considering Additional Fabric Configurations.	1-11
Configuring Software Features	1-11
Verifying the Switch Operation	1-11

Verify High Availability (HA)	1-11
Connecting ISLs to the Switch	1-12
Verifying the Fabric Connectivity.	1-12
Connecting Devices to the Switch	1-12
Verifying Device Connectivity	1-13
Backing Up Switch Configuration Information	1-13
Making a Printed Copy of Switch Information	1-13
Saving the Switch Configuration File to a Host	1-14

Chapter 2 Basic Switch Management

Enabling and Disabling Switches and Ports	2-1
Enabling a Switch	2-2
Disabling a Switch	2-2
Enabling a Port	2-2
Disabling a Port	2-3
Domain IDs	2-3
Displaying a Current List of Domain IDs.	2-3
Setting a Domain ID	2-4
Firmware Versions	2-5
Displaying the Firmware Version & Information	2-5
Switch Date and Time	2-6
Setting the Switch Date and Time	2-6
Synchronizing Local Time with an External Source	2-7
Correcting the Time Zone of a Switch	2-7
Switch Configuration Settings	2-8
Displaying the Switch Configuration Settings	2-9
Backing Up the Fabric Configuration Settings	2-10
Restoring the Switch Configuration Settings	2-11

Swapping Port Area IDs	2-12
Enabling the PortSwap Feature.	2-12
Disabling the PortSwap Feature	2-12
Swapping Port Area IDs	2-13
Viewing Swapped Ports	2-13
Gateway Compatibility	2-14
About Gateways	2-14
About ISL R_RDY Mode	2-14
Enabling/Disabling ISL R_RDY Mode	2-14
Changing a Switch Name	2-15
Switch Status Policies	2-16
Viewing the Policy Threshold Values	2-16
Configuring the Policy Threshold Values	2-17
Tracking Switch Changes	2-19
Enabling the Track Changes Feature	2-20
Displaying Whether Track Changes are Enabled	2-21
Routing	2-21
In Order Delivery	2-21
Dynamic Load Sharing	2-21
Forcing In-order Delivery of Frames	2-21
Restoring In-order Delivery of Frames	2-22
Using Dynamic Load-Sharing	2-22
Viewing Routing Path Information	2-23
Viewing Routing Information Along a Path	2-26
Help Commands	2-26
Displaying Help Information for a Command	2-26
Additional Help Topics	2-27
Reading Hexadecimal Port Diagrams	2-27

Chapter 3 Securing Fabric OS

Using Secure Shell (SSH)	3-1
Disabling the Telnet Interface.	3-2

Listeners	3-2
Passwords	3-3
Accessing Switches and Fabrics	3-3
Hosts	3-4
Devices	3-4
Switch Access	3-4
Zoning	3-4
Comparing Password Behavior Between Firmware Versions	3-4
Password Management Information	3-5
Password Prompting Behaviors	3-8
Password Recovery Options	3-10
Password Migration During Firmware Upgrade/Downgrade	3-11
Modifying a Password	3-12
Setting Recovery Passwords	3-13
About Boot PROM Passwords	3-13
Setting Both the Boot PROM and the Recovery Passwords (SilkWorm 3 3850/3900)	250/ 3-14
Setting Both the Boot PROM and Recovery Passwords (SilkWorm 1200	0/
24000)	3-14
Setting the Boot PROM Password Only (SilkWorm 3250/3850/3900).	3-15
Setting the Boot PROM Password Only (SilkWorm 12000/24000)	3-17
About Forgotten Passwords	3-18
Recovering a User, Admin, or Factory Password	3-18
Recovering a Forgotten Root or Boot PROM Password	3-18

Upgrading the SilkWorm 3250, 3850, and 3900 Using the CLI	4-1
Upgrading the SilkWorm 12000/24000 Using the CLI	4-4
Upgrading Firmware on a Dual CP	4-6
Upgrading Firmware on a Single CP	4-10
Troubleshooting Firmware Downloads	4-12
Using Advanced Web Tools to Upgrade Firmware	4-14

Chapter 4

	Using Fabric Manager to Upgrade Firmware	4-16
Chapter 5	Working With the SilkWorm 12000 and 24000	
	Ports on the SilkWorm 12000/24000	5-1
	Using the Slot/Port Method	5-1
	Using the Port Area Number Method	5-2
	Determining the Area Number (ID) of a Port.	5-2
	Basic Blade Management	5-3
	Disabling a Blade	5-3
	Enabling a Blade	5-3
	Powering On a Blade	5-4
	Powering Off a Blade	5-4
	Chassis Information	5-4
	Displaying the Status of All Slots in the Chassis	5-4
	Displaying Information on Switch FRUs	5-6
	Setting the Blade Beacon Mode	5-8
Chapter 6	Distributed Fabrics Procedures	
	License Activation	6-1
	Configuring a Remote Switch Fabric	6-1
	Modifying Configuration Parameters	6-2
	Configuring an Extended Fabric ISL Link	6-3
	Configuring a Long Distance Connection	6-4
	VC Translation Mode	6-5
	Distributed Fabric Commands	6-6
Chapter 7	The SAN Management Application	
	The Management Server	7-1
	Configuring Access to the Management Server	7-2
	Displaying the Access Control List	7-2
	Adding a WWN to the Access Control List	7-3
	Deleting a WWN from the Access Control List	7-4

Displaying the Management Server Database	7-6
Clearing the Management Server Database	7-6
Activating the Platform Management Service	7-6
Deactivating the Platform Management Service	7-7
Controlling the Topology Discovery	7-7
Display the Status of MS Topology Discovery Service	7-7
Enable the MS Topology Discovery Feature	7-8
Disable the MS Topology Discovery Feature	7-8

Chapter 8 Performance Monitor Procedures

License Activation	8-1
Performance Monitor Commands	8-1
AL_PA Performance Monitoring	8-2
Displaying the CRC Error Count	8-2
Clearing the CRC Error Count	8-3
End-to-End Performance Monitoring	8-3
Adding End-to-End Monitors	8-4
Setting a Mask for End-to-End Monitors	8-6
Displaying the End-to-End Mask of a Port.	8-7
Displaying End-to-End Monitors	8-7
Deleting End-to-End Monitors	8-9
Clearing End-to-End Monitor Counters	8-9
Filter-based Performance Monitoring.	8-9
Adding Standard Filter-based Monitors	8-10
Adding User-defined Filter-based Monitors	8-11
Displaying Filter-based Monitors	8-13
Deleting Filter-based Monitors	8-13
Clearing Filter-based Monitor Counters	8-14
Saving and Restoring Monitor Configurations	8-14

Chapter 9 ISL Trunking Procedures

Introducing Brocade ISI	Trunking Commands	9-2
Infocuting Diocade ISL		9-2

Gathering Traffic Data	9-2
Using the CLI to View Traffic Data	9-2
Using Performance Monitoring to View Traffic Data	9-3
Using Fabric Watch to Gather Traffic Data	9-3
Enabling and Disabling ISL Trunking	9-4
Enabling and Disabling Trunking on a Port	9-4
Enabling and Disabling Trunking on a Switch	9-4
Setting Port Speed.	
Setting the Speed for All Ports on a Switch	9-5
Setting the Speed for a Port	9-5
Displaying Trunking Information	9-6
Debugging a Trunking Failure	
ISL Trunking Tips	9-7

Chapter 10 Zoning Procedures

License Activation
Zoning Commands 10-1
Managing Aliases
Creating an Alias 10-2
Adding a Member to an Alias 10-3
Removing a Member from an Alias 10-4
Deleting an Alias 10-4
Viewing Aliases in the Zone Database 10-5
Managing Zones 10-5
Creating a Zone
Adding a Member to an Zone 10-6
Removing a Member from a Zone 10-7
Deleting a Zone
Viewing Zones in the Zone Database

Managing Configurations	
Creating a Configuration	10-9
Adding a Member to a Configuration	10-9
Removing a Member from a Configuration	10-10
Deleting a Configuration	10-11
Aborting Changes to a Configuration	10-11
Viewing Configurations in the Zone Database	10-11

Chapter 11 Administering and Monitoring FICON® Fabrics

Overview	11-1
QuickStart Procedure	11-2
Configuring the Switch in a FICON® Environment	11-3
Recommended Configuration Settings	11-3
Switched Point-to-Point Configuration	11-4
Cascaded Configuration	11-4
Changing the Domain ID	11-5
Enabling or Disabling IDID Mode	11-8
Identifying IDID Mode Enabled Switches	11-10
Displaying Link Incidents.	11-11
Displaying Registered Listeners for Link Incidents	11-12
Displaying Node Identification Data	11-12
Identifying Port Swapping Nodes	11-14
Identifying Ports That Have Completed the RNID Exchange	11-15
Enabling Port Swapping	11-16
Disabling Port Swapping	11-16
Swapping Ports	11-16
Monitoring FRU Failure Information	11-17
Clearing the FICON® Management Database	11-18
Troubleshooting	11-18

Chapter 12 Using Interoperability Mode

Interoperability	2-1
------------------	-----

Brocade Switch Requirements	12-2
McData Firmware Requirements	12-2
Supported Brocade Features	12-2
Unsupported Brocade Features	12-2
Configuration Recommendations	12-3
Configuration Restrictions	
Zoning Restrictions	12-4
Zone Name Restrictions	12-5
Pre-Configuration Planning	12-5
Enabling Interoperability Mode	12-5
Disabling Interoperability Mode.	12-6

Chapter 13 Selecting a Switch PID Format

Understanding Switch PID Format.	13-1
Rebooting Hosts When Using PID Formats	13-2
Dynamic PID	13-3
Static PID	13-3
Selecting a PID format	13-3
Changes to Configuration Data	13-5
Moving to Extended Edge PID Format	13-5
Updating Firmware Using the Command Line.	13-6
Configuring Extended Edge PID Format Using the Command Line	13-6
Updating Firmware Using WebTools	13-8
Configuring Extended Edge PID Format Using WebTools	13-9
Moving to Core PID Format	13-11
Setting the PID Format	13-11
Evaluating the Fabric	13-12
Collect Device, Software, Hardware, and Config Data	13-12
Make List of Manually Configurable PID Drivers	13-13
Analyze Data	13-13
Perform Empirical Testing	13-14

Planning the Update Procedure.	13-14
Outline for Online Update Procedure	13-15
Outline for Offline Update Procedure	13-16
Hybrid Update	13-16
Performing Disruptive PID Format Changes	13-16
Basic Update Procedures	13-17
HP/UX	13-18
AIX Procedure	13-19

Chapter 14 Diagnostics and Status

About Diagnostics.	14-1
Manual Operation	14-1
Power on Self Test (POST)	14-2
Diagnostic Command Set	14-2
Interactive Diagnostic Commands	14-3
Persistent Error Log	14-4
Displaying the Error Log Without Page Breaks	14-4
Displaying the Error Log With Page Breaks	14-5
Clearing the Switch Error Log	14-5
Setting the Error Save Level of a Switch	14-6
Displaying the Current Error Save Level Setting of a Switch	14-7
Resizing the Persistent Error Log	14-7
Showing the Current Persistent (Non-Volatile) Error Log Configuration of Switch	of a 14-7
Configuring the Syslog Daemon	14-7
syslogd Overview	14-7
syslog Error Message Format	14-8
Message Classification	14-8
Syslogd CLI Commands	14-9
Configuring syslogd	14-9

Switch Diagnostics	14-11
Displaying the Switch Status	14-11
Displaying Information About a Switch	14-11
Displaying the Uptime Of the Switch	14-12
Port Diagnostics	14-12
Displaying Software Statistics for a Port	14-12
Displaying Hardware Statistics for a Port.	14-13
Displaying a Summary of Port Errors.	14-14
Hardware Diagnostics	14-16
Monitoring the Fan Status	14-16
Monitoring the Power Supply Status	14-16
Monitoring the Temperature Status	14-17
Running Diagnostic Tests on the Switch Hardware	14-17
Linux Root Capabilities	14-18

Chapter 15 Troubleshooting

About Troubleshooting	15-1
Port Initialization and FCP Auto Discovery Process	15-2
Most Common Problem Areas	15-4
Gathering Information for Technical Support.	15-5
Specific Scenarios	15-5
Host Cannot See Target (Storage or Tape Devices)	15-5
Check the Logical Connection	15-6
Check the Simple Name Server (SNS)	15-7
Check for Zoning Discrepancies.	15-8
Fabric Segmentation	15-9
Restoring a Segmented Fabric	15-10
Reconcile Fabric Parameters Individually	15-10
Restore Fabric Parameters Through ConfigUpload	15-10
Reconcile a Domain ID Conflict	15-11
Zoning Setup Issues	15-11

Fabric Merge Conflicts Related to Zoning			
Correcting Zone Merge Conflicts (Basic Procedure)	15-13		
Correcting Zone Merge Conflicts (Detailed Procedure)	15-13		
MQ-WRITE Error	15-14		
I2C bus Errors			
Check Fan Components	15-15		
Check the Switch Temperature	15-15		
Check the Power Supply	15-15		
Check the Temperature, Fan, and Power Supply	15-16		
Device Login Issues	15-16		
Watchdog (Best Practices)	15-20		
Actions	15-20		
Kernel Software Watchdog Related Errors	15-21		
Identifying Media-Related Issues	15-21		
Component Tests Overview	15-21		
Check Switch Components	15-22		
Link Failure	15-29		
Switch State	15-30		
Port's Physical State	15-30		
Speed Negotiation Failure	15-31		
Link Initialization Failure (Loop)	15-31		
Point-to-Point Initialization Failure	15-32		
Port Has Come Up in a Wrong Mode	15-32		
Marginal Links	15-33		
Confirming the Problem	15-33		
Isolating the Areas	15-34		
Ruling Out Cabling Issues	15-35		
Checking for Nx_Port (Host or Storage) Issues	15-35		
Switch Hangs when Connected to a Terminal Server.			
Determining if a Switch is Being Flow Controlled	15-35		
Correcting a "Hung" Switch	15-36		

Unexpected Output in the Serial PortLog	15-36
Inaccurate Information in the Error Log	15-37

Chapter 16 Troubleshooting Using the Port Logs

Understanding the portlogdump	16-2
Reading portlogdump Entries	16-2
Additional portlogdump Examples	16-2
Firmware Version Variations in the portlogdump	16-3
Using and Customizing the portlogdump	16-3
portlogdump Related Commands	16-4
Displaying a List of Possible Port Log Events	16-4
Customizing the portlogdump Output	16-5
Locating Information by Task	16-7
About the portlogdump Fields	16-12
Time	16-12
Task	16-12
Event	16-15
Port	16-17
Cmd	16-17
Args	16-18
The FC_PH Frame	16-19
About FC_PH Frames	16-19
FC_PH Frames Definitions	16-20
State Change Notification (SCN)	16-26
SCN Definitions	16-26
Reading an SCN Event	16-27
SCN Codes and Descriptions	16-28
SCN States by Type	16-29
SCN Types	16-31
SCN Modes.	16-31
SCN Errors	16-32

Brocade-Specific Code		
Brocade Port Physical State Values	16-33	
Brocade LED State Values	16-33	
Brocade Bypass Reason Code	16-34	
Brocade Switch Parameter Meanings	16-34	
Speed Negotiation.		
Speed Negotiation Code Command	16-35	
Speed Negotiation EVENT	16-35	
Speed Negotiation State Values	16-35	
DISTANCE Code Value	16-36	
I/O Control (ioctl)	16-36	
Speed Negotiation Example	16-45	
Extended Link Service (ELS)	16-46	
About FC_PH ELS	16-46	
ELS Command Code	16-47	
FC-PH - Reject Reason Codes and Explanations	16-49	
ELS Examples	16-53	
Switch Fabric Internal Link Services (SW_ILS)		
About Internal Link Services (ILS)	16-54	
SW_ILS Command Codes	16-56	
SW_ILS Reject Reason Codes (SW_RJT)	16-57	
SW_ILS Examples	16-59	
About FSS	16-70	
FSS Messages	16-71	
FSSk Service Identification	16-73	
FSSk Component Identification	16-73	
FSS Example	16-74	
Fabric Services		
About Fabric Services.	16-75	
Fabric Services Codes.	16-76	

ISL Miscellaneous 1			
ISL Flow Control Mode Values 16-79			
ISL Flow Control Parameters 16-79			
Switch_Priority Field Values 16-79			
Fibre Channel Common Transport Protocol (FC-CT) 16-80			
About FC Common Transport Protocols (FC-CT) 16-80			
FC-CT Definitions 16-82			
About the Name Server (SNS) 16-83			
Name Server Commands and Code Descriptions 16-84			
About the Management Server 16-92			
Management Server Command Code			
Management Server Reason Code and Explanation			
Alias Service			
ctin and ctout Event Example			
Link Control Frames 16-113			
About Link Control Frames			
Link Control Headers 16-113			
Link Control Frames 16-115			
Link Control Code 16-116			
Link Control Abort Sequence (ABTS) 16-119			
Payload Information			
SW_ELS Payload Frames 16-119			
SW_ILS Payload Frames 16-123			
FC-CT Payload Frames 16-129			
Fibre Channel Protocol Information 16-136			
Brocade ASIC Loop Code 16-137			
Well-Known Ordered Sets 16-138			
Port State Machine Values (pstate) 16-141			
Well Known Addresses 16-141			
Valid AL_PA Addresses 16-142			

Appendix A FICON Configuration Worksheet

- Appendix B Identifying Ports From the Tag Field (FICON Link Incidents)
- Appendix C Frequently Asked Questions

Glossary

Index

This document is a procedures guide written to help storage access network (SAN) administrators like you configure and manage your Brocade SilkWorm SAN. This document is specific to Fabric OS v4.2.0 and all switches running Fabric OS v4.2.0, including:

- SilkWorm 3250
- SilkWorm 3850
- SilkWorm 3900
- SilkWorm 12000
- SilkWorm 24000

In those instances in which procedures or parts of procedures apply to some switches but not others, this guide identifies exactly which switches are supported and which are not.

"About This Document" contains the following sections:

- "How This Document Is Organized," next
- "Supported Hardware and Software," on page xxii
- "What's New in This Document," on page xxiii
- "Document Conventions," on page xxiii
- "Additional Information," on page xxiv
- "Getting Technical Help," on page xxv
- "Document Feedback," on page xxvi

How This Document Is Organized

This document is organized to help you find the particular information that you want as quickly and easily as possible. Chapter 1 tells you how to initialize and configure your Brocade SilkWorm switches. The following chapters tell you how to perform basic management and security procedures, provide task- and feature-specific information, and offer diagnostic and troubleshooting guidance.

The document contains the following components:

- Chapter 1, "Initial Configuration," provides basic directions for the initial connection and configuration of a switch.
- Chapter 2, "Basic Switch Management," provides an overview of switch management.
- Chapter 3, "Securing Fabric OS," provides an overview of basic security requirements.
- Chapter 4, "Downloading Firmware," provides procedures for installing firmware upgrades.

• Chapter 5, "Working With the SilkWorm 12000 and 24000," provides information and procedures specific to SilkWorm 12000 and 24000 switches.

Because the SilkWorm 12000 and SilkWorm 24000 have CP cards and port cards, these directors require procedures not needed by the SilkWorm 3250/3850/3900 switches.

- Chapter 6, "Distributed Fabrics Procedures," provides information and procedures for managing distributed fabrics.
- Chapter 7, "The SAN Management Application," illustrates the use of the Management Server SAN management application.
- Chapter 8, "Performance Monitor Procedures," provides procedures that make use of the performance monitor.
- Chapter 9, "ISL Trunking Procedures," provides information and procedures for using the ISL trunking feature.
- Chapter 10, "Zoning Procedures," provides information and procedures for the use of the zoning feature.
- Chapter 11, "Administering and Monitoring FICON® Fabrics," provides information and procedures for administering and monitoring fabrics with FICON.
- Chapter 12, "Using Interoperability Mode," provides information about using SilkWorm switches with other brands of switches.
- Chapter 13, "Selecting a Switch PID Format," provides information about the various forms of switch PID formats available and the procedures needed to set the switch PID mode.
- Chapter 14, "Diagnostics and Status," provides information about diagnostic and status-determining procedures, particularly about how to read the error log.
- Chapter 15, "Troubleshooting," provides troubleshooting information and procedures.
- Chapter 16, "Troubleshooting Using the Port Logs," provides information about how to read a port log dump.
- Appendix A, "FICON Configuration Worksheet," provides a worksheet to record your FICON environment planning and actual configuration.
- Appendix B, "Identifying Ports From the Tag Field (FICON Link Incidents)," shows you how to use the Tag Field from a FICON Link Incident report to identify the affected port.
- The glossary defines both terms specific to Brocade technology and common industry terms with uses specific to Brocade technology.
- The index points you to the exact pages on which specific information is located.

Supported Hardware and Software

This document has been updated to include information specific to Brocade SilkWorm 3250, 3850, and 3900 switches and SilkWorm 12000 and 24000 directors running Brocade Fabric OS version v4.2.0, including:

- Additional functionality or support in the software from Fabric OS v4.1.0.
- Changes to functionality or support in the software from Fabric OS v4.1.0.

Although many different software and hardware configurations are tested and supported by Brocade Communications Systems, Inc. for the Brocade Fabric OS v4.2.0 release, documenting all possible configurations and scenarios is beyond the scope of this document; however, this document does specify when procedures or steps of procedures apply only to specific switches.

This document does not support all 4.x Fabric OS versions. This document is specific to the Fabric OS v4.2.0 release. In some cases, v2.x, v3.x and earlier v4.x releases are discussed to highlight the changes in v4.2.0.

What's New in This Document

The following changes have been made since this document was last released:

- Information that was added:
 - Chapters 6, 8, 9, 10, 11, 12, and 15 and appendices A and B were moved from individual feature books to this book.
- Information that was changed:
 - The firmware update procedure, Chapter 4, "Downloading Firmware," was substantially modified.
 - The chapter about PIDs, Chapter 13, "Selecting a Switch PID Format,", was substantially modified because of the addition of a new PID format, Extended Edge PID format.
 - Software version levels throughout the manual have been updated to reflect the new software versions.
 - Various additional edits.
- Information that was removed:
 - Information about QuickLoop was removed.

For further information, refer to the release notes.

Document Conventions

This section describes text formatting conventions and important notice formats.

Text Formatting

The following table describes the narrative-text formatting conventions that are used in this document.

Convention	Purpose
bold text	Identifies command names
	• Identifies GUI elements
	• Identifies keywords/operands
	• Identifies text to enter at the GUI or CLI
<i>italic</i> text	Provides emphasis
	Identifies variables
	• Identifies paths and internet addresses
	• Identifies document titles and cross references
code text	Identifies CLI output
	Identifies syntax examples

Notes, Cautions, and Warnings

The following notices appear in this document.

A note provides a tip, emphasizes important information, or provides a reference to related information.

Caution

Note

A caution alerts you to potential damage to hardware, firmware, software, or data.

Warning

A warning alerts you to potential danger to personnel.

Additional Information

This section lists additional Brocade and industry-specific documentation that you might find helpful.

Brocade Resources

The following related documentation is provided on the Brocade Documentation CD-ROM and on the Brocade Web site through Brocade Connect:

Fabric OS

- Fabric OS Features Guide v4.2.0
- MIB Reference Manual v2.6.2/3.1.0/4.1.0/4.1.2/4.2.0
- Secure Fabric OS User's Guide v2.6.2/3.1.2/4.2.0
- Secure Fabric OS QuickStart Guide v2.6.2/3.1.2/4.2.0
- Fabric Watch User's Guide v4.2.0
- Fabric OS Reference v4.2.0
- Advanced Web Tools Administrator's Guide v4.2.0
- Diagnostic and System Error Messages Reference Manual, v4.2.0

SilkWorm

- SilkWorm 3250/3850 Hardware Reference Manual
- SilkWorm 3900 Hardware Reference Manual
- SilkWorm 12000 Hardware Reference Manual
- SilkWorm 24000 Hardware Reference Manual

For practical discussions about SAN design, implementation, and maintenance, you can obtain *Building SANs with Brocade Fabric Switches* through:

http://www.amazon.com

For additional Brocade documentation, visit the Brocade SAN Info Center and click the Resource Library location:

http://www.brocade.com

Release notes are bundled with the Fabric OS.

Other Industry Resources

For additional resource information, visit the Technical Committee T11 Web site. This Web site provides interface standards for high-performance and mass storage applications for Fibre Channel, storage management, as well as other applications:

http://www.tll.org

For information about the Fibre Channel industry, visit the Fibre Channel Industry Association Web site:

http://www.fibrechannel.org

Getting Technical Help

Contact your switch support supplier for hardware, firmware, and software support, including product repairs and part ordering. To expedite your call, have the following information available:

1. General Information

- Technical Support contract number, if applicable
- Switch model
- Switch operating system version
- Error messages received
- **supportshow** command output
- Detailed description of the problem and specific questions
- Description of any troubleshooting steps already performed and results

2. Switch Serial Number

The switch serial number and corresponding bar code are provided on the serial number label, as illustrated below.

FT00X0054E9

The serial number label is located as follows:

- SilkWorm 2000-series switches: bottom of chassis
- SilkWorm 3200, 3250, 3800, and 3850 switches: back of chassis
- SilkWorm 3900 switches: bottom of chassis
- SilkWorm 12000 and 24000 directors: inside front of chassis, on wall to left of ports

3. World Wide Name (WWN)

- *SilkWorm switches running Fabric OS 4.x (SilkWorm 3250, 3850, and 3900 switches, and SilkWorm 12000 and 24000 directors):* Provide the license ID. Use the **licenseidshow** command to display the license ID.
- *All other SilkWorm switches:* Provide the switch WWN. Use the **wwn** command to display the switch WWN.

Document Feedback

Because quality is our first concern at Brocade, we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. Forward your feedback to *documentation@brocade.com*. Provide the title and version number and as much detail as possible about your issue, including the topic heading and page number and your suggestions for improvement

This chapter includes information and procedures that are specific to individual switch models. The procedures and individual steps are labeled with the switch models to which they apply.

The hardware reference manual for your SilkWorm 3250, SilkWorm 3850, or SilkWorm 3900 switch or SilkWorm 12000 or SilkWorm 24000 director describes the initial connecting and configuring of your switch, including initial power up and setting the IP address. This chapter picks up from that point with additional initial configuration tasks.

- "Connecting Through the Serial Interface"
- "Changing the System Passwords"
- "Setting the Boot PROM and Recovery Passwords"
- "Customize the Switch Name"
- "Managing Licensed Features"
- "Configuring Fabric Parameters"
- "Configuring Software Features"
- "Verifying the Switch Operation"
- "Verify High Availability (HA)"
- I"Connecting ISLs to the Switch"
- "Verifying the Fabric Connectivity"
- "Connecting Devices to the Switch"
- "Verifying Device Connectivity"
- "Backing Up Switch Configuration Information"

Connecting Through the Serial Interface

Use this procedure when connecting to the serial port.

There are a few procedures that require you connect through the serial port: for example, setting the boot PROM and recovery passwords.

1. Connect the serial cable to the serial port on the switch and to an RS-232 serial port on the workstation.

If the serial port on the workstation is RJ-45 instead of RS-232, remove the adapter on the end of the serial cable and insert the exposed RJ-45 connector into the RJ-45 serial port on the workstation.

2. Disable any serial communication programs running on the workstation.

- 3. Open a terminal emulator application (such as HyperTerminal on a PC, or TERM or Kermit in a UNIX environment) and configure the application as follows:
 - In a Windows 95, 98, 2000, or NT environment:

Parameter	Value
Bits per second:	9600
Databits:	8
Parity:	None
Stop bits:	1
Flow control:	None

In a UNIX environment, enter the following string at the prompt:
 tip /dev/ttyb -9600

Connecting to the Switch

To connect to a switch using a telnet connection:

- Verify that the switch is connected to your IP network through the RJ-45 Ethernet port. At least one switch in the fabric must be connected through the Ethernet port in order to open a telnet connection to the switch. Refer to the hardware manual of your specific switch for more information about connecting the switch to your IP network. For redundancy, it is recommended that at least two switches in your fabric are connected to your IP network.
- 2. Open a telnet connection to the switch.

The login prompt is displayed if the telnet connection successfully found the switch in the network. If you connect to one CP on a Silkworm 12000 or 24000, you will be prompted to enter the logical switch number. This prompt will not appear for Silkworm 3900, 3850 or 3250 switches.

- 3. Enter the user ID (usually user or administrator) at the login prompt.
- 4. Enter the password.

If you are connecting for the first time, enter the default password: *password*. You will be prompted to change the system passwords. You can press **Ctrl-C** to skip these prompts. You will be prompted at each subsequent login until all the system passwords have been changed from the default values. You cannot use the **passwd** command until all account passwords have been changed from the default value, using the prompts at initial login.

- 5. Enter your new system passwords or press Ctrl-C to skip this prompt.
- 6. Verify that the login was successful. A prompt is displayed, showing the switch name and user ID to which you are connected.

Example

login: admin
password: xxxxxxx
switch:admin>

Changing the System Passwords

As a security measure, the first time you connect to the Fabric OS you are requested to change the system passwords. There are four account levels: root, factory, administrator, and user. You cannot reuse the default passwords. Refer to the **passwd** command in the *Fabric OS Reference Manual* for detailed information on the character limitations of passwords.

Note

Make sure to record these passwords exactly as entered and save them in a secure location.

Note

Brocade recommends that you perform all switch configuration, management, and monitoring tasks from the admin or user account levels.

To change the system passwords at first login:

- 1. Connect to the switch as the administrator. The default password for the administrator is "password".
- 2. At first login you are prompted to change all the system passwords.
- 3. At the "Enter new password" prompt for the root account, enter a new root password.
- 4. At the "Enter new password" prompt for the factory account, enter a new factory password.
- 5. At the "Enter new password" prompt for the admin account, enter a new administrator password.
- 6. At the "Enter new password" prompt for the user account, enter a new user password.
- 7. Make sure to record these passwords exactly as entered and save them in a secure location.

Example

```
Fabric OS (cp0)
cp0 login: admin
Password:
Please change your passwords now.
Use Control-C to exit or press 'Enter' key to proceed.
for user - root
Changing password for root
Enter new password:
Password changed.
Saving password to stable storage.
Password saved to stable storage successfully.
Please change your passwords now.
for user - factory
Changing password for factory
Enter new password:
Password changed.
Saving password to stable storage.
Password saved to stable storage successfully.
Please change your passwords now.
for user - admin
Changing password for admin
Enter new password:
Password changed.
Saving password to stable storage.
Password saved to stable storage successfully.
Please change your passwords now.
for user - user
Changing password for user
Enter new password:
Password changed.
Saving password to stable storage.
Password saved to stable storage successfully.
```


Note

switch:admin>
switch:admin>

As a security measure, passwords entered on the command line are not displayed. Make sure to record these passwords exactly as entered and save them in a secure location.

Setting the Boot PROM and Recovery Passwords

Steps 1, 3, 10, 11 and 12 apply to the SilkWorm 12000/24000 switches only. Steps 4 and 9 are switch dependent. One version of these steps applies to SilkWorm 3250, 3850 and 3900 switches; one version applies to SilkWorm 12000 directors; one version applies to SilkWorm 24000 directors. Each of these is clearly marked in the text that follows.

The boot PROM and recovery passwords provide an additional layer of security beyond the root password.

- Setting a boot PROM password protects the boot prompt from unauthorized use.
- Setting a recovery password turns on the password recovery option, which requires a user to contact Technical Support before recovering a root or boot PROM password.

Caution

Setting both the boot PROM and recovery passwords on all switches running Fabric OS v4.2.0 is strongly recommended. Not setting either of these passwords can compromise switch security.

To set the boot PROM password without setting the recovery password, refer to Chapter 3, "Securing Fabric OS" section *Setting the Boot PROM Password Only (SilkWorm 12000/24000)* on page 3-17.

To set the boot PROM password and recovery password, follow these steps:

1. On a SilkWorm 12000/24000:

Determine the active CP card by opening a telnet session to either CP card, connecting as admin, and entering the **hashow** command.

On a SilkWorm 3250/3850/3900:

Proceed to the next step.

- 2. Create a serial connection to the switch. (See "Setting the Boot PROM and Recovery Passwords".)
- 3. On a SilkWorm 12000/24000:

Connect to the active CP card by serial connection or telnet and enter the **hadisable** command to prevent failover during the remaining steps.

On a SilkWorm 3250/3850/3900:

Proceed to the next step.

- 4. Follow step "a" for a SilkWorm 3250/3850/3900 switch, step "b" for a SilkWorm 12000 director, and step "c" for a SilkWorm 24000 director:
 - a. On a SilkWorm 3250/3850/3900:

Reboot.

b. On a SilkWorm 12000:

Reboot the standby CP card by pressing the yellow ejector buttons at top and bottom of the CP card and then pressing both ejector handles back towards the switch to lock the card back into the slot.

c. On a SilkWorm 24000:

Reboot the standby CP card by sliding the On/Off switch on the ejector handle of the standby CP card to Off and then back to On.

5. Press ESC within four seconds after the message "Press escape within 4 seconds..." displays.

The following options are available:

- 1) Start system.
- 2) Recovery password.
- 3) Enter command shell.
- 6. Enter "2" at the prompt to set the recovery password. The following message displays: "Recovery password is NOT set. Please set it now."

7. Enter the recovery password. The recovery password must be between 8 and 40 alphanumeric characters. A random password that is 15 characters or longer is recommended for higher security. The firmware only prompts for this password once. It is not necessary to record the recovery password.

The following prompt displays: "New password:".

8. Enter the boot PROM password and then reenter it when prompted. Record this password for future use.

The new passwords are automatically saved (saveenv command not required).

- 9. Follow step "a" for SilkWorm 3250/3850/3900 switch and step "b" for a SilkWorm 12000/24000 director.
 - a. On a SilkWorm 3250/3850/3900:

Reboot. Traffic flow resumes when the switch finishes rebooting.

This completes the procedure for a SilkWorm 3250/3850/3900 switch.

b. On a SilkWorm 12000/24000:

Fail over the active CP card by entering the **hafailover** command. Traffic flow through the active CP card resumes when the failover is complete. The high availability feature is supported only by Brocade Fabric OS v4.1.0 and above.

10. On a SilkWorm 12000/24000:

Move the serial cable to the serial port on the new standby CP card (previous active CP card).

11. On a SilkWorm 12000/24000:

Repeat step 3 through step 8 for the new standby CP card (each CP card has a separate boot PROM password).

12. On a SilkWorm 12000/24000:

Connect to the active CP card by serial connectioor telnet and enter the **haenable** command to restore high availability. The high availability feature is supported only by Brocade Fabric OS v4.1.0 and above.

Caution

It is extremely important that you note and safely store the boot prom password. The password might be required later, to troubleshoot a switch, so having the password available can save valuable time. Recovering the password otherwise is a time-consuming process and requires contacting Technical Support.

Customize the Switch Name

Step 1 applies to SilkWorm 12000/24000 directors. Step 3 applies only to SilkWorm 12000 directors. Each instance is clearly marked.

You can customize the switch names for the logical switches. If you choose to change the default switch name, use a switch name that is unique and meaningful.

Note

Changing the switch name causes a domain address format RSCN to be issued.

Switch names have the following features:

• Can be up to 15 characters long for v4.2.0.

This is shorter than under v3.x, which allows names up to 19 characters in length.

• Must begin with an alpha character.

Note

Can consist of any combination of alphanumeric and underscore characters.

The default name for the SilkWorm 24000 director and Silkworm 3900, 3850 and 3250 switches is "swd77". On the Silkworm 12000 director, the two logical switches have different default names. The name "swd77" is used for the logical switch containing the port cards in slots 1-4, and "swd76" is used for the logical switch containing port cards in slots 7-10.

To customize the switch name:

1. On a SilkWorm 12000/24000:

Verify the CP to which the serial cable is connected.

On a SilkWorm 3250/3850/3900:

Proceed to the next step.

- 2. Connect to the switch as admin.
- 3. On a SilkWorm 12000:

Choose the logical switch that you want to change. Enter the value that corresponds to that logical region:

- Enter 0 to configure logical switch 0 (slot 1 through 4).
- Enter 1 to configure logical switch 1 (slot 7 through 10).

On a SilkWorm 3250/3850/3900/24000:

Proceed to the next step.

- 4. Enter the **switchname** command.
- 5. Enter the new name in quotes, as shown in the following example:

switchname "sw10"

For more information about this command, refer to the Fabric OS Reference Manual.

- 6. Record the new switch name for future reference.
- On the Silkworm 12000 director, you can optionally disconnect from the CP session and repeat steps 1 - 6 for the second logical switch. (This does not apply to the Silkworm 24000, 3900, 3850, or 3250, as none of these support a second logical switch.)

1-7

Managing Licensed Features

Licensed features such as Advanced Zoning, Advanced Performance Monitor, and Advanced Web Tools are already loaded onto the switch firmware but must be enabled with a license key. Once you have purchased these features, you are provided with a key to enable them; refer to "Generating License Keys".

You can use several access methods to manage the switch (once the IP addresses are set), including:

- Fabric OS CLI (telnet)
- Advanced Web Tools
- Fabric Manager
- A third-party application using the API

Generating License Keys

To generate license keys, perform the following steps:

1. Go to the Brocade Web site at:

www.brocade.com.

- 2. Select products & solutions.
- 3. Select Software Products.
- 4. In the **Related Links** panel on the right side of the page, select **Software License Keys**. The Software License Keys instruction page appears.
- 5. If you want to generate a single license key, select Generate 1 license key.

If you want to generate multiple license keys, select Batch Generation of Licenses.

The Software License Key instruction page appears.

- 6. Enter the following required fields:
 - email address
 - switch World Wide Name(s)
 - transaction key(s)

Note

When generating multiple license keys, enter the World Wide Names and transaction keys in the table at the bottom of the screen. If you need additional rows in the table, select **Add More Rows**.

- 7. Select Next. A verification screen appears.
- 8. Verify that the information appears correctly.

Press **Submit** if the information displayed is correct. If the information is incorrect, press **Previous** and change the information.

9. Once the information is corrected, press **Submit**. An information screen appears that displays the license key.

You will receive an email from Brocade with a single license key (or multiple license keys) and installation instructions for the license key(s).

The license keys are chassis-based. In Brocade SilkWorm directors and switches that allow for multiple logical switches, the license key applies to all logical switches within the chassis.

Activating a License

Follow these steps to activate a license on a switch using the command line interface:

- 1. Connect to the switch as admin.
- To activate a license, you must have a valid license key. Use the license key provided in the licensed Paper Pack supplied with switch software, or follow the procedure in the section "Generating License Keys," on page 1-8 to generate a license key.

Activate the license using the licenseadd command, as follows:

Example

switch:admin> licenseadd "key"

Note

The license key is case sensitive and must be entered exactly as given. The double quotes are optional.

3. Verify the license was added by entering the licenseshow command at the command line prompt.

A list displays all of the licenses currently installed on the switch.

Example

```
switch:admin> licenseshow
AbbbcDefcQxdezdr:
    Web license
    Zoning license
    SES license
    Fabric license
    Remote Switch license
    Extended Fabric license
    Entry Fabric license
    Fabric Watch license
    Performance Monitor license
    Trunking license
    Security license
switch:admin>
```

If the licensed feature is listed, the feature is installed and immediately available.

If the license is not listed, repeat step 2 of this procedure.

Verifying License Activation

To verify that the required licenses are activated on the switch, perform the following steps:

- 1. Connect to the switch as admin.
- 2. Enter the licenseshow command at the command line prompt.

A list displays all of the licenses currently activated on the switch.

Example

```
switch:admin> licenseshow
AbbbcDefcQxdezdr:
    Web license
    Zoning license
    Fabric license
    Remote Switch license
    Remote Fabric license
    Extended Fabric license
    Entry Fabric license
    Fabric Watch license
    Performance Monitor license
    Trunking license
    Security license
switch:admin>
```

If the licensed feature is listed, the feature is installed and immediately available.

If the license is not listed, follow the procedure in "Activating a License" to activate the license.

Note

In order to activate a license, you need a valid license key. Refer to "Generating License Keys" for instructions on generating single or multiple license keys.

Configuring Fabric Parameters

Fabric parameters include all the items listed in the **configure** command. Fabric parameters (displayed using the **configshow** command) must be identical for each switch across a fabric.

To save time when configuring the fabric parameters:

- 1. Configure one switch first (using the **configure** command)
- 2. Use the **configUpload** command to save the configuration information. Refer to "Saving the Switch Configuration File to a Host".
- 3. Use the **configdownload** command to download it onto each of the remaining switches. Refer to "Restoring the Switch Configuration Settings".

It is recommended that you only download configuration files to switches of the same switch type.

Caution

PID addressing format is an option of the **configure** command. The default under v4.x is Core PID, also called Format 1; this is not the default on Fabric OS 2.x and Fabric OS 3.x. If you are adding a Fabric 4.x switch to a fabric with lower firmware level switches, you need to decide on a switch PID format. Mixed PID formats in a fabric results in fabric segmentation. For detailed information regarding PID formats and related procedures, refer to Chapter 13, "Selecting a Switch PID Format".

Considering Additional Fabric Configurations

In addition to the configuration parameters set through the **configure** command, additional parameters can be set.

Some additional configuration options to consider include:

- Set Routing Refer to "Routing".
- Track Changes Refer to "Tracking Switch Changes".
- Status Policies Refer to "Switch Status Policies".

Configuring Software Features

Configure the software features (such as Fabric Watch, Advanced Zoning, and Secure Fabric OS) for the fabric.

To save time, configure the software features on one switch; then save the configuration file and download it to the each of the remaining switches. Refer to "Saving the Switch Configuration File to a Host" and to "Restoring the Switch Configuration Settings".

Brocade recommends that you only download configuration files to switches of the same switch type.

Verifying the Switch Operation

To verify that your switch is operating correctly, display switch and port status and assess the status output for correct switch operation:

- 1. Connect to the switch as admin.
- 2. Enter the **switchshow** command at the command line. This command displays a switch summary and a port summary.
- 3. Check that the switch and ports are online.

Verify High Availability (HA)

- 1. Connect to the switch as admin.
- 2. Enter the hashow command.

Verify that HA is enabled, that the heartbeat is up, and that the HA state is in sync.

The **hashow** command is supported only in the SilkWorm 12000 and 24000 directors. Other Brocade switches do not contain CP cards and do not require this command.

- 3. (Optional) Enter the **chassishow** command to verify operation of the Field Replaceable Units (FRUs).
- 4. (Optional) Enter the **slotshow** command to inventory and display the current status of each slot in the system.

The **slotshow** command is applicable only to the SilkWorm 12000 and 24000 directors. Other Brocade switches do not have slots and do not require this command.

Connecting ISLs to the Switch

Refer to the hardware user's guide of your specific switch for ISL connection and cable management information.

Verifying the Fabric Connectivity

To view and verify all switches in a fabric, display a summary of information about the fabric.

- 1. Connect to the switch as the administrator.
- 2. Enter the **fabricshow** command at the command line. This command displays a summary of all the switches in the fabric.

Example

switch:admi	n> fabricshow			
Switch ID	Worldwide Name	Enet IP Addr	FC IP Addr	Name
1: fffc01	10:00:00:60:69:80:04:5a	192.168.186.61	192.168.68.193	"switch61"
3: fffc03	10:00:00:60:69:10:9c:29	192.168.186.175	0.0.0.0	"switch175"
4: fffc04	10:00:00:60:69:12:14:b7	192.168.174.70	0.0.0.0	"switch70"
5: fffc05	10:00:00:60:69:45:68:04	192.168.144.121	0.0.0.0	"switch121"
6: fffc06	10:00:00:60:69:00:54:ea	192.168.174.79	192.168.68.197	"switch79"
7: fffc07	10:00:00:60:69:80:04:5b	192.168.186.62	192.168.68.194	"switch62"
8: fffc08	10:00:00:60:69:04:11:22	192.168.186.195	0.0.0.0	>"switch195"
9: fffc09	10:00:00:60:69:10:92:04	192.168.189.197	192.168.68.198	"switch197"
10: fffc0a	10:00:00:60:69:50:05:47	192.168.189.181	192.168.68.181	"switch181"
11: fffc0b	10:00:00:60:69:00:54:e9	192.168.174.78	192.168.68.196	"switch78"
15: fffc0f	10:00:00:60:69:30:1e:16	192.168.174.73	0.0.0.0	"switch73"
33: fffc21	10:00:00:60:69:90:02:5e	192.168.144.120	0.0.0.0	"switch120"
44: fffc2c	10:00:00:60:69:c0:06:8d	192.168.144.121	0.0.0.0	"switch121"
97: fffc61	10:00:00:60:69:90:02:ed	192.168.144.123	0.0.0.0	"switch123"
98: fffc62	10:00:00:60:69:90:03:32	192.168.144.122	0.0.0	"switch122"

The Fabric has 15 switches

switch:admin>

Connecting Devices to the Switch

Power off all devices (to minimize PLOGIs) and connect them to the switch, according to your topology. For devices that cannot be powered off, connect the devices but use the **portdisable** command to disable the port on the switch.

When powering the devices back on, wait for each device to complete the fabric login before powering on the next one.

To view and verify that you have fabric-wide device connectivity, display the fabric-wide device count. The number of devices listed in the Name Server (NS) should reflect the number of devices that are connected.

1. Connect to the switch as the administrator.

Verifying Device Connectivity

- 2. (Optional) Enter the switchshow command to verify that the storage devices are connected.
- 3. (Optional) Enter the **nsshow** command to verify that the storage devices have successfully registered with the Name Server.
- 4. Enter the **nsallshow** command at the command line. This command displays 24-bit Fibre Channel addresses of all devices in the fabric.

Example

```
switch:admin> nsallshow
75 Nx_Ports in the Fabric {
    010e00 012fe8 012fef 030500 030b04 030b08 030b17 030b18
    030b1e 030b1f 040000 050000 050200 050700 050800 050de8
    050def 051700 061c00 071a00 073c00 090d00 0a0200 0a07ca
    0a07cb 0a07cc 0a07cd 0a07ce 0a07d1 0a07d2 0a07d3 0a07d4
    0a07d5 0a07d6 0a07d9 0a07da 0a07dc 0a07e0 0a07e1 0a0f01
    0a0f02 0a0f0f 0a0f10 0a0f1b 0a0f1d 0b2700 0b2e00 0b2fe8
    0b2fef 0f0000 0f0226 0f0233 0f02e4 0f02e8 0f02ef 210e00
    211700 211fe8 211fef 2c0000 2c0300 611000 6114e8 6114ef
    611600 620800 621026 621036 6210e4 6210e8 6210ef 621400
    621500 621700 621a00
}
switch:admin>
```

Backing Up Switch Configuration Information

You should make both a hard-copy backup of switch information and save a copy of the switch configuration file to a host.

Making a Printed Copy of Switch Information

It is recommended that you make a hard-copy backup of all key configuration data, including license key information for every switch, and store it in a safe and secure place for emergency reference. Refer to the following procedure:

1. Print out the information from the following command and store it in a secure location:

licenseshow - Displays the license keys you have installed.

2. Print out the information from the following command and store it in a secure location:

configshow - Displays configuration parameters and setup information. Refer the **configshow** command in the *Fabric OS Reference Manual* or the *Fabric Manager User's Guide* for more information.

3. Print out the information from the following command and store in a secure location:

ipaddrshow - Displays the IPaddress.

Note

Depending on the security procedures of your company, you might want to keep a record of the user levels and passwords for all switches in the fabric. This is sensitive information and access to such information should be limited.

Saving the Switch Configuration File to a Host

It is recommended that you save all key configuration data, including license key information for every switch, and upload it to a host for emergency reference.

The configuration file is written as three sections and is broken up as follows:

- The first section contains the switch boot parameters. It has variables such as the switch's name and IP address. This section corresponds to the first few lines of output of the **configshow** command.
- The second section contains general switch configuration variables, such as diagnostic settings, fabric configuration settings, and SNMP settings. This section corresponds to the output of the **configshow** command (after the first few lines), although there are more lines uploaded than shown by the command.
- The third section contains zoning configuration parameters.

To save a backup copy of the configuration file to a host:

- 1. Verify that the FTP service is running on the host workstation (or on a Windows machine).
- 2. Connect to the switch as the administrator.
- 3. Enter the **configupload** command.

Enter the command only and then enter the options as you are prompted, or enter:

configupload ["host","user","file"[,"passwd"]]

where:

host	Specify a host name or IP address in quotation marks: for example, "citadel" or "192.168.1.48". The configuration file is downloaded from this host system. This operand is optional.
user	Specify a user name in quotation marks: for example, "jdoe". This user name is used to gain access to the host. This operand is optional.
file	Specify a file name in quotation marks: for example, "config.txt". Absolute path names can be specified using forward slash (/). Relative path names create the file in the user's home directory on UNIX hosts and in the directory where the FTP server is running on a Windows hosts. This operand is optional.
passwd	Specify a password in quotation marks. This operand is optional.

1

Example

```
switch:admin> configupload "citadel","jdoe","config.txt","passwd"
upload complete
switch:admin>
```

A message appears that the upload is complete.

1

This chapter includes information and procedures that are specific to managing individual SilkWorm switch models, as mentioned in the preface to this guide. This text is clearly labeled, "For SilkWorm 3250, 3850, and 3900 switches" or "For SilkWorm 12000 and 24000 directors," as appropriate.

This chapter provides information on basic management tasks for a switch.

The following procedures are described in this chapter:

- "Enabling and Disabling Switches and Ports," on page 2-1
- "Domain IDs," on page 2-3
- "Firmware Versions," on page 2-5
- "Displaying the Firmware Version & Information," on page 2-5
- "Switch Date and Time," on page 2-6
- "Switch Configuration Settings," on page 2-8
- "Swapping Port Area IDs," on page 2-12
- "Gateway Compatibility," on page 2-14
- "Changing a Switch Name," on page 2-15
- "Switch Status Policies," on page 2-16
- "Tracking Switch Changes," on page 2-19
- "Routing," on page 2-21
- "Help Commands," on page 2-26
- "Reading Hexadecimal Port Diagrams," on page 2-27

Enabling and Disabling Switches and Ports

Before you do anything else, you need to know the basic procedures for enabling and disabling your SilkWorm switches and their ports. This section includes the following procedures:

- "Enabling a Switch," on page 2-2 (all models)
- "Disabling a Switch," on page 2-2 (all models)
- "Enabling a Port," on page 2-2 (switch specific)
- "Disabling a Port," on page 2-3 (switch specific)

Enabling a Switch

Use the following procedure to enable any of the five models of SilkWorm switches described in this guide:

- 1. Connect to the switch as the administrator.
- 2. Enter the switchenable command at the command line.

All Fibre Channel ports that passed the POST test are enabled. If the switch was part of a fabric, it rejoins the fabric.

Example

```
switch:admin> switchenable
10 9 8 7 6 5 4 3 2 1
fabric: Principal switch
fabric: Domain 1
switch:admin>
```

Disabling a Switch

Use the following procedure to disable any of the five models of SilkWorm switches described in this guide:

- 1. Connect to the switch as the administrator.
- 2. Enter the switchdisable command at the command line.

All Fibre Channel ports on the switch are taken offline. If the switch was part of a fabric, the fabric reconfigures.

Example

switch:admin> switchdisable

Enabling a Port

In the following procedure, Step 2 is different for SilkWorm 3250, 3850 and 3900 switches than it is for SilkWorm 12000 and 24000 directors. Enable a port for all these switches as follows:

- 1. Connect to the switch as the administrator.
- 2. For SilkWorm 3250, 3850 and 3900 switches, enter the following command at the command line:

portenable portnumber

The portnumber is the port number of the port you want to enable.

For SilkWorm 12000 and 24000 directors, enter the following command at the command line:

```
portenable [slotnumber]/portnumber
```

The *slotnumber* and *portnumber* is the slot and port number of the port you want to enable.

No matter which step you use, if the port is connected to another switch, the fabric may reconfigure. If the port is connected to one or more devices, these devices become available to the fabric.

Disabling a Port

In the following procedure, Step 2 is different for SilkWorm 3250, 3850 and 3900 switches than it is for SilkWorm 12000 and 24000 directors. Disable a port for all these switches as follows:

- 1. Connect to the switch as the administrator.
- 2. For SilkWorm 3250, 3850 and 3900 switches, enter the following command at the command line:

portdisable portnumber

The portnumber is the port number of the port you want to enable.

For SilkWorm 12000 and 24000 directors, enter the following command at the command line:

portdisable [slotnumber]/portnumber

The *slotnumber* and *portnumber* is the slot and port number of the port you want to disable.

No matter which step you use, if the port is connected to another switch, the fabric may reconfigure.

Domain IDs

Although domain IDs are assigned dynamically when a switch is enabled, you can reset them manually so that you can control the ID number or to resolve a domain ID conflict when you merge fabrics.

This section includes the following procedures:

- " "Displaying a Current List of Domain IDs," on page 2-3 (all models)
- "Setting a Domain ID," on page 2-4 (all models)

Each procedure is detailed next.

Displaying a Current List of Domain IDs

Use the following procedure to display domain IDs for any of the five models of SilkWorm switches described in this guide:

- 1. Connect to a switch.
- 2. Enter the **fabricshow** command.

Fabric information is displayed, including the Domain ID (D_ID).

The fields in the fabricshow command are described as follows:

Switch ID The switch Domain_ID and embedded port D_ID.

Worldwide Name The switch WWN.

Enet IP Addr The switch ethernet IP address.

FC IP Addr The switch FC IP address.

Name The switch symbolic name. An arrow (>) indicates the principal switch.

If multicast alias groups exist, the following fields are shown:

Group ID The alias group number and D_ID.

Token The alias group token (assigned by the N_Port).

Setting a Domain ID

Note that on a SilkWorm 12000 director both logical switch domain IDs default to 1; you must resolve this domain ID conflict before connecting the director to the fabric. To do this, either:

- Use this procedure to make the domain IDs unique before connecting the logical switches to the fabric
- Disable one of the switches until both are connected to the fabric, then reenable (unique domain IDs are automatically assigned).

This applies only to the SilkWorm 12000 director, not to the SilkWorm 3250, 3850, or 3900 switches or the 24000 director. Use the following procedure to set new domain IDs for all five SilkWorm switches described in this guide:

- 1. Connect to the switch.
- 2. Enter the switchdisable command to disable the switch.
- 3. Enter the configure command.
- 4. Enter "Y" after the "Fabric parameters" prompt:

Example

Fabric parameters (yes, y, no, n): [no] y

5. Enter a unique domain ID at the domain ID prompt:

Domain: (1..239) [1] 3

- 6. Complete the remaining prompts (or press CTRL+D to accept the other settings and exit).
- 7. Enter the switchenable command to re-enable the switch.

Firmware Versions

For information regarding performing firmware downloads, refer to the "Downloading Firmware" Chapter of this document.

Different SilkWorm switches run on different versions of Fabric OS firmware. The following table describes the switch series and the corresponding firmware:

Switch Type	Correct Firmware
SilkWorm 2xxx series	Fabric OS 2.x
SilkWorm 3200, 3600, and 3800 series	Fabric OS 3.x
SilkWorm 3900 switch	Fabric OS 4.0.2x or higher.
SilkWorm 12000 switch	Fabric OS 4.x
SilkWorm 3250, 3850, 24000 switch	Fabric OS v4.2.0 or higher

 Table 2-1
 Switch Series and Correct Firmware

Note

Once a switch is running v4.2.0 firmware (or higher), it is recommended that all directly connected switches be running v2.6.2, v3.1.2, or v4.2.0 before a subsequent firmware download is performed. Refer to the Firmware Download section "Upgrading Firmware on the SilkWorm 3250, 3850, 3900" on page 4-3 for more detailed information.

Displaying the Firmware Version & Information

Use the version command to display firmware information and build dates.

To display the firmware version:

- 1. Connect to the switch as the administrator (see "Connecting Through the Serial Interface").
- 2. Enter the version command at the command line.

This command displays the Kernel version, Fabric OS release number, and other information about the firmware.

The following information is displayed in the version command:

Kernel: Displays the version of switch kernel operating system;

Fabric OS: Displays the version of switch Fabric OS.

Made on:	Displays the build	date of firmware runn	ing in switch;
----------	--------------------	-----------------------	----------------

Flash: Displays the build date of firmware stored in flash proms;

BootProm: Displays the version of the firmware stored in the boot PROM.

Usually the Made on and Flash dates are the same, since the switch starts running flash firmware at power-on. However, in the time period between a **firmwareDownload** command and the next reboot, the dates can differ.

3. Enter the **firmwareShow** command.

Use this command to display the Fabric OS versions on primary and secondary partitions on the local CP and on the remote CP. This command identifies the status for each CP as Active or Standby, and will also identify the slot number for each CP.

If there is only one CP available, the command displays the Fabric OS versions for the primary and secondary partitions on that CP.

Switch Date and Time

All switches maintain current date and time in non-volatile memory. Date and time are used for logging events. Switch operation does not depend on the date and time; a switch with an incorrect date and time value still functions properly.

Additionally, you can synchronize the local time of the Principal or Primary Fabric Configuration Server (FCS) switch to an external NTP server.

Note

The **date** and **tsclockserver** commands are disabled when the security feature is enabled. With security enabled you can only view the current date setting unless the commands are performed on the Primary FCS switch.

This section includes the following procedures:

- "Setting the Switch Date and Time," on page 2-6 (all models)
- "Synchronizing Local Time with an External Source," on page 2-7 (all models)
- "Correcting the Time Zone of a Switch," on page 2-7 (all models)

Setting the Switch Date and Time

Use the following procedure to set the date and time for any of the five models of SilkWorm switches described in this guide:

- 1. Connect to the switch as the administrator.
- 2. Enter the date command at the command line using the following syntax:

date "MMDDhhmmYY"

The values represent the following:

- MM is the month, valid values are 01-12.
- DD is the date, valid values are 01-31.
- hh is the hour, valid values are 00-23.
- mm is minutes, valid values are 00-59.
- YY is the year, valid values are 00-99.

Note

Year values greater than 69 are interpreted as 1970-1999, year values less than 70 are interpreted as 2000-2069. The date function does not support daylight savings time or time zones, so changes will have to be reset manually.

Example

```
switch:admin> date
Fri May 5 21:50:00 UTC 1989
switch:admin>
switch:admin> date "0624165203"
Tue Jun 24 16:52:30 UTC 2003
switch:admin>
```

Synchronizing Local Time with an External Source

Use the following procedure to synchronize the local time of the Principal or Primary FCS switch to an external NTP server for any of the five models of SilkWorm switches described in this guide.

- 1. Connect to the switch as administrator.
- 2. Enter the tsclockserver [*ipaddr*] command

where *ipaddr* is the IP address of the NTP server. The *ipaddr* specified should be the IP address of an NTP server and should be accessible from the switch. This operand is optional; by default this value is "LOCL".

Example

```
switch:admin> tsclockserver
LOCL
switch:admin> tsclockserver "132.163.135.131"
switch:admin> tsclockserver
132.163.135.131
switch:admin>
```

Correcting the Time Zone of a Switch

Use the following procedure to set the Time Zone for any of the five models of SilkWorm switches described in this guide:

2

- 1. Connect to the switch as the administrator.
- 2. Enter the tstimezone command as follows:

tstimezone [houroffset [, minuteoffset]]

Example

- For Pacific Standard Time enter tsTimeZone -8,0
- For Central Standard Time enter **tsTimeZone -6,0**
- For Eastern Standard Time enter tsTimeZone -5,0

The default time zone for switches is Universal Time Conversion (UTC), which is 8 hours ahead of Pacific Standard Time. For additional time zone conversions, refer to Table 2-2 on page 2-8.

The parameters listed above would not apply if the time zone of the switch(es) has already been changed from the default (8 hours ahead of PT).

Refer to the **tstimezone** command in the *Fabric OS Reference Guide* for more detailed information about the command parameters.

3. Repeat steps 1 and 2 on all switches for which the Time Zone needs to be set.

This only needs to be done once because the value is written to flash.

For US time zones, use Table 2-2 on page 2-8 to determine the correct parameter for the **tstimezone** command.

Local Time	tstimezone parameter (difference from UTC)
Atlantic Standard	-4,0
Atlantic Daylight	-3,0
Eastern Standard	-5,0
Eastern Daylight	-4,0
Central Standard	-6,0
Central Daylight	-5,0
Mountain Standard	-7,0
Mountain Daylight	-6,0
Pacific Standard	-8,0
Pacific Daylight	-7,0
Alaskan Standard	-9,0
Alaskan Daylight	-8,0
Hawaiian Standard	-10,0

 Table 2-2
 Conversion from UTC to Local Time

Switch Configuration Settings

This section includes the following procedures:

- "Displaying the Switch Configuration Settings," on page 2-9 (all models)
- "Backing Up the Fabric Configuration Settings," on page 2-10 (all models)
- "Restoring the Switch Configuration Settings," on page 2-11 (all models)

It is important to have consistent fabric configuration settings on switches in the same fabric, since inconsistent parameters can cause fabric segmentation. To display and check the fabric configuration settings, perform the following procedure. To troubleshoot a fabric segmentation issue, refer to "Restore Fabric Parameters Through ConfigUpload".

The following parameters are included in the System Configuration Settings:

- Fabric Parameters
- Virtual Channel Settings
- Zoning Operation Parameters
- Rscn Transmission Mode
- Arbitrated Loop Parameters
- System Services
- Portlog Events Enable

Displaying the Switch Configuration Settings

Use the following procedure to display the system configuration settings for any of the five models of SilkWorm switches described in this guide:

- 1. Connect to the switch as the administrator.
- 2. Enter the configshow command at the command line. The system configuration settings appear.

```
switch:admin> configshow
RSCN.end-device.TransmissionMode:0
alpaList:1
boot.device:fei
boot.file:/usr/switch/firmware
boot.gateway.ipa:192.168.147.172
boot.ipa:192.168.147.172:ffffff00
boot.mac:10:00:00:60:69:80:04:22
boot.name:ter172
boot.server.ipa:
boot.server.name:host
boot.user:user
diag.loopID:125
diag.mode.burnin:0
diag.mode.burnin.1.name:switchess.sh
diag.mode.burnin.10.name:switchess.sh
diag.mode.burnin.2.name:switchess.sh
diag.mode.burnin.3.name:switchess.sh
diag.mode.burnin.4.name:switchess.sh
diag.mode.burnin.7.name:switchess.sh
diag.mode.burnin.8.name:switchess.sh
diag.mode.burnin.9.name:switchess.sh
diag.mode.burnin.level:0
diag.mode.esd:0
diag.mode.lab:28
<output truncated>
```


Note

System configuration parameters vary depending on switch model and configuration.

Backing Up the Fabric Configuration Settings

Keep a backup file of the fabric configuration settings in the event that the configurations are lost, or unintentional changes are made.

Fabric Configurations can be saved through the Fabric OS, or through Fabric Manager. To back up or restore system configuration settings through Fabric Manager, refer to the *Fabric Manager User's Guide*.

Use the following procedure to upload a backup copy of the configuration settings to a host computer for any of the five models of SilkWorm switches described in this guide:

- 1. Verify that the FTP service is running on the host workstation.
- 2. Connect to the switch as the administrator.
- 3. At the command line enter the **configupload** command. The command becomes interactive and you are prompted for the required information.

2

Example

```
switch:admin> configupload
Server Name or IP Address [host]: 192.168.15.42
User Name [user]: johndoe
File Name [config.txt]: config-switch.txt
Password:xxxxx
Upload complete
switch:admin>
```

Restoring the Switch Configuration Settings

System Configurations can be restored through the Fabric OS, or through Fabric Manager. To restore system configuration settings through Fabric Manager, refer to the *Fabric Manager User's Guide*.

Use the following procedure to restore the system configuration settings from a previously saved backup for any of the five models of SilkWorm switches described in this guide:

- 1. Verify that the FTP service is running on the host workstation.
- 2. Connect to the switch as the administrator.
- 3. Disable the switch by entering the switchdisable command.
- 4. Enter the **configdownload** command at the command line. The command becomes interactive and you are prompted for the required information.
- 5. At the "Do you want to continue [y/n]" prompt select "y".

Example

6. Enter the reboot command to reboot the switch:

Example

switch:admin> reboot

2

This section includes the following procedures:

- "Enabling the PortSwap Feature," on page 2-12 (all models)
- "Disabling the PortSwap Feature," on page 2-12 (all models)
- "Swapping Port Area IDs," on page 2-13 (switch specific)
- "Viewing Swapped Ports," on page 2-13 (all models)

The port swap feature enables you two swap area IDs on two physical switch ports.

Enabling the PortSwap Feature

Use the following procedure to enable the port swap feature for any of the five models of SilkWorm switches described in this guide:

- 1. Connect to the switch as administrator.
- 2. Enable the port swap feature:

```
portswapenable
```

The port swap feature is enabled.

Example

```
switch:admin> portswapenable
done.
switch:admin>
```

Disabling the PortSwap Feature

Use the following procedure to disable the port swap feature for any of the five models of SilkWorm switches described in this guide:

- 1. Connect to the switch as administrator.
- 2. Disable the port swap feature:

```
portswapdisable
```

The port swap feature is disabled.

Example

```
switch:admin> portswapdisable
done.
switch:admin>
```

Swapping Port Area IDs

Use this procedure to swap the port area IDs of two switch ports. In order to swap port area IDs, the port swap feature must be enabled, and both switch ports must be disabled. The swapped area IDs for the two ports remain persistent across reboots, power cycles, and failovers.

In the following procedure, Steps 3 and 4 are different for SilkWorm 3250, 3850 and 3900 switches than they are for SilkWorm 12000 and 24000 directors. Swap area IDs for a pair of switch ports as follows:

- 1. Connect to the switch as administrator.
- 2. Enable the port swap feature:

portswapenable

3. For SilkWorm 3250, 3850 and 3900 switches, enter the following at the command line:

portdisable *port1* portdisable *port2*

For SilkWorm 12000 and 24000 directors, enter the following at the command line:

portdisable slot/port1
portdisable slot/port2

4. For SilkWorm 3250, 3850 and 3900 switches, enter the following at the command line:

portswap port1 port2

For SilkWorm 12000 and 24000 directors, enter the following at the command line:

portswap slot1/port1 slot2/port2

Viewing Swapped Ports

Use the following procedure to display swapped ports on a switch for any of the five models of SilkWorm switches described in this guide:

- 1. Connect to the switch as the administrator.
- 2. Verify the port area IDs have been swapped:

portswapshow

A table is displayed showing the physical port numbers and the logical area IDs for any swapped ports.

Example

Gateway Compatibility

This section includes the following topics:

- "About Gateways," on page 2-14
- "About ISL R_RDY Mode," on page 2-14
- "Enabling/Disabling ISL R_RDY Mode," on page 2-14 (switch specific)

About Gateways

A gateway is a device used to interconnect geographically dispersed SAN islands into a single unified fabric. A gateway provides point-to-point E_Port connectivity between two Fibre Channel switches, separated by a protocol independent metro or wide area network such as IP or SONET. Except for link initialization, gateway devices are mostly transparent to switches and provide E_Port connectivity from one switch to another. When a gateway receives traffic destined for a remote device, frames may be encapsulated into the frame or packet used by the other network and then passed across the network to be received by the switch at the remote end

About ISL R_RDY Mode

Switch ports usually initialize using Exchange Link Parameters (ELP) Mode 1; however Gateways expect an initialization that uses ELP mode 2. Enabling ISL R_RDY mode simplifies Gateway connections by causing the port initialization to use the expected method (ELP mode 2). Therefore, the WAN gateway does not need to support a special mode for these switches.

Additional R_RDY Information:

- R_RDY was first available in Fabric OS v3.1.0 and v4.1.0.
- Any number of E_Ports in a fabric can be configured for ISL R_RDY mode.
- No license is required.

Special Considerations for R_RDY Mode

- When determining switch count maximums, include the switches connected to both gateways.
- When a port is set to ISL R_RDY Mode, the port will not check FC addresses for compliance with Core PID requirements. Check Core PID settings carefully on all switches in the fabric. If Core PIDs are not consistent among the switches in the fabric, the fabric will segment.
- ISL R_RDY Mode does not currently support Extended Fabrics, or the security features in Secure Fabric OS.

Enabling/Disabling ISL R_RDY Mode

Refer to the Fabric OS Command Reference for more information about the portcfgislmode command.

- 1. (Optional) Enter the **configure** command on all switches to make sure the PID format is consistent across the entire fabric.
- 2. Connect to the switch on which you want to configure ISL R_RDY mode as the administrator.
- 3. Use the **portcfgislmode** command.

This command is switch dependent. One version of the step applies to SilkWorm 3250/3850/3900 switches; one version applies to SilkWorm 12000/24000 directors.

(Use for SilkWorm 3250/3850/3900)

Use the following syntax

portcfgislmode port [0|1]

Specify a port number. Valid values for port number vary depending on the switch type. This operand is required.

Specify 1 to enable ISL R_RDY mode. Specify 0 to disable ISL R_RDY mode.

This operand is required.

(Use for SilkWorm 12000/24000)

Use the following syntax

portcfgislmode slot/port [0|1]

Specify a slot/port number pair. Valid values for slot and port number vary depending on the switch type. This operand is required.

Specify 1 to enable ISL R_RDY mode. Specify 0 to disable ISL R_RDY mode.

This operand is required.

Example

```
switch:admin> portcfgislmode 2/3, 1
Committing configuration...done.
ISL R_RDY Mode is enabled for port 3. Please make sure the PID
formats are consistent across the entire fabric.
switch:admin>
```

4. Repeat the above steps for any additional ports that will be connected to a Gateway.

Changing a Switch Name

Switches can be identified by IP address, Domain ID, WWN, or customized switch name.

To change the name of a switch:

- 1. Connect to the switch as the administrator.
- 2. Enter the switchname command at the command line, using the following syntax:

switchname "newname"

Where newname is the new name for the switch.

Version 4.x switch names can be up to 1 - 15 characters long, must begin with a letter, and can contain letters, numbers, or the underscore character. It is not necessary to use the quotation marks.

Example

```
switch:admin> switchname "switch62"
Committing configuration...
Done.
switch62:admin>
```

Switch Status Policies

For detailed information about setting policy parameters, refer to the Fabric Watch User's Guide.

The policy parameter determines the number of failed or non-operational units for each contributor that will trigger a status change in the switch.

Each parameter can be adjusted so that a specific threshold must be reached before that parameter changes the overall status of a switch to MARGINAL or DOWN. For example, if the FaultyPorts DOWN parameter is set to 3, the status of the switch will change if 3 ports fail. Only one policy parameter needs to pass the MARGINAL or DOWN threshold to change the overall status of the switch.

There are seven parameters that determine the status of a switch:

- Number of faulty ports
- Missing GBICs
- Power supply status
- Temperature in enclosure
- Fan speed
- Port status
- ISL status

Viewing the Policy Threshold Values

To view the switch status policy threshold values:

- 1. Connect to the switch as the administrator.
- 2. Enter the switchstatuspolicyshow command at the command line.

Whenever there is a switch change, an error message is logged and an SNMP connUnitStatusChange trap is sent. Use the **switchstatusshow** command to check the status of the switch.

For a nonmodular switch the output is similar to the following:

<pre>switch:admin> switc The current overall</pre>	-		policy	parameters:
FaultyPorts	2	1		
MissingSFPs	0	0		
PowerSupplies	0	1		
Temperatures	2	1		
Fans	2	1		
PortStatus	0	0		
ISLStatus	0	0		
switch:admin>				

For a modular switch, the output is similar to the following:

Example

<pre>switch:admin> switc The current overall</pre>	-	policyshow status policy parameters: Marginal	
FaultyPorts	2	1	
MissingSFPs	0	0	
PowerSupplies	2	1	
Temperatures	2	1	
Fans	2	1	
PortStatus	0	0	
ISLStatus	0	0	
CP	0	1	
NMM	0	1	
Blade	0	lswitch:admin>	

Configuring the Policy Threshold Values

To set the switch status policy threshold values:

- 1. Connect to the switch as the administrator.
- 2. Enter the **switchstatuspolicyset** command at the command line. First, the current switch status policy parameter values are displayed, then, you are prompted to enter values for each DOWN and MARGINAL threshold parameter:
 - Enter the number of faulty ports required to change the switch status to DOWN and press <enter>.
 - Enter the number of faulty ports required to change the switch status to MARGINAL and press <enter>
 - Enter the number of missing GBICs required to change the switch status to DOWN and press <enter>.
 - Enter the number of missing GBICs required to change the switch status to MARGINAL and press <enter>.
 - Enter the number of bad Power Supply warnings required to change the switch status to DOWN and press <enter>
 - Enter the number of bad Power Supply warnings required to change the switch status to MARGINAL and press <enter>.
 - Enter the number of temperature warnings required to change the switch status to DOWN and press <enter>.
 - Enter the number of temperature warnings required to change the switch status to MARGINAL and press <enter>.
 - Enter the number of fan speed warnings required to change the switch status to DOWN and press <enter>
 - Enter the number of fan speed warnings required to change the switch status to MARGINAL and press <enter>.
 - Enter the number of port down warnings required to change the switch status to DOWN and press the <enter>
 - Enter the number of port down warnings required to change the switch status to MARGINAL and press <enter>
 - Enter the number of ISLstatus down warnings required to change the switch status to DOWN and press <enter>.
 - Enter the number of ISLstatus down warnings required to change the switch status to MARGINAL and press <enter>

```
switch:admin> switchstatuspolicyset
To change the overall switch status policy parameters
The current overall switch status policy parameters:
Down Marginal
FaultyPorts 2 1
MissingSFPs 0 0
PowerSupplies 2 1
Temperatures 2 1
Fans 2 1
PortStatus 0 0
ISLStatus 0 0
Note that the value, 0, for a parameter, means that it is
NOT used in the calculation.
  In addition, if the range of settable values in the prompt is (0..0),
** the policy parameter is NOT applicable to the switch.
** Simply hit the Return key.
The minimum number of
FaultyPorts contributing to
DOWN status: (0..32) [2] 3
FaultyPorts contributing to
MARGINAL status: (0..32) [1] 2
MissingSFPs contributing to
DOWN status: (0..32) [0]
MissingSFPs contributing to
MARGINAL status: (0..32) [0]
Bad PowerSupplies contributing to
DOWN status: (0..2) [2]
Bad PowerSupplies contributing to
MARGINAL status: (0..2) [1
Bad Temperatures contributing to
DOWN status: (0..5) [2]
Bad Temperatures contributing to
MARGINAL status: (0..5) [1]
Bad Fans contributing to
DOWN status: (0..6) [2]
Bad Fans contributing to
MARGINAL status: (0..6) [1]
Down PortStatus contributing to
DOWN status: (0..32) [0]
Down PortStatus contributing to
MARGINAL status: (0..32) [0]
down ISLStatus contributing to
DOWN status: (0..32) [0]
down ISLStatus contributing to
MARGINAL status: (0..32) [0]
Policy parameter set has been changed
switch:admin>
```

3. Verify the threshold settings you have configured for each parameter. Enter the **switchstatuspolicyshow** command to view your current switch status policy configuration:

Note

By setting the DOWN and MARGINAL value for a parameter to 0,0 that parameter is no longer used in setting the overall status for the switch.

Tracking Switch Changes

The Track Change feature allows you to keep record of specific changes that may not be considered switch events, but may provide useful information. The output from the track changes feature is dumped to the error log for the switch. Use the **errdump** command or **errshow** command to view the error log.

Items in the error log created from the Track changes feature are labeled TRACK.

Trackable changes are:

- Successful login
- Unsuccessful login
- Logout
- Config file change from task
- · Track-changes on
- Track-changes off

An SNMP-TRAP mode can also be enabled; refer to the **trackchangeshelp** command in the *Fabric OS Command Reference Guide*.

For troubleshooting information on the Track Changes feature, refer to "Inaccurate Information in the Error Log".

Enabling the Track Changes Feature

To enable the track changes feature:

- 1. Connect to the switch as the administrator.
- 2. Enter the trackchangesset 1 command at the command line to enable the track changes feature.

A prompt is displayed, verifying that the Track Changes feature is on.

Example

```
switch:admin> trackchangesset 1
Committing configuration...done.
switch:admin>
```

The output from the track changes feature is dumped to the error log for the switch. Use the **errdump** command or **errshow** command to view the error log.

Items in the error log created from the Track changes feature are labeled TRACK.

Example

```
switch:admin> errdump
Error 07
------
0x17ef (fabos): Mar 24 11:10:27
Switch: 1, Info TRACK-CONFIG_CHANGE, 4, Config file change from task:TRACKIPC
Error 06
------
0x4e7 (fabos): Mar 24 11:10:24
Switch: 1, Info TRACK-TRACK_ON, 4, Track-changes on
```

Displaying Whether Track Changes are Enabled

To display the status of the Track Changes feature:

- 1. Connect to the switch as the administrator.
- 2. Enter the trackchangesshow command at the command line.

The status of the track changes feature is displayed as either on or off. This also displays whether the track changes feature is configured to send SNMP traps.

Example

```
switch:admin> trackchangesshow
Track changes status: ON
Track changes generate SNMP-TRAP: NO
switch:admin>
```

Routing

In Order Delivery

In a stable fabric, frames are always delivered in order, even when the traffic between switches is shared among multiple paths. However, when topology changes occur in the fabric (for instance, a link goes down), traffic is rerouted around the failure. When topology changes occur, some frames could be delivered out of order.

The default behavior is to automatically enable out-of-order delivery of frames during fabric topology changes; this enables fast rerouting after a fabric topology change. Refer "Forcing In-order Delivery of Frames" to change the default routing settings during topology changes.

Dynamic Load Sharing

Routing is generally based on the incoming port and the destination domain. This means that all the traffic coming in from a port (either E_Port or Fx_Port) directed to the same remote domain is routed through the same output E_Port. To optimize fabric routing, when there are multiple equivalent paths to a remote switch, traffic is shared among all the paths. Load sharing is recomputed when a switch is booted up or every time a change in the fabric occurs. A change in the fabric is defined as an E_Port going up or down, or an Fx_Port going up or down. Refer to "Using Dynamic Load-Sharing".

Forcing In-order Delivery of Frames

To force in-order delivery of frames during fabric topology changes:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the iodset command.

```
switch:admin> iodset
done.
switch:admin>
```

Note

This command can cause a delay in the establishment of a new path when a topology change occurs, and should be used with care.

Restoring In-order Delivery of Frames

To restore the default In-order delivery setting (which allows frames to be delivered out-of-order during topology changes for faster delivery):

- 1. Connect to the switch as the administrator.
- 2. Enter the **iodreset** command at the command line.

Example

```
switch:admin> iodreset
done.
switch:admin>
```

Using Dynamic Load-Sharing

Optimal load sharing is rarely achieved with DLS disabled. If DLS is turned on (using **dlsset**), routing changes can affect working ports. For example, if an Fx_Port goes down, another Fx_Port may be rerouted from one E_Port to a different E_Port. The switch minimizes the number of routing changes, but some are necessary in order to achieve optimal load sharing.

If DLS is turned off (using **dlsreset**), load sharing is performed only at boot time or when an Fx_Port comes up.

- 1. Connect to the switch as administrator.
- 2. Enter the dlsshow command to view the current DLS setting.

One of the following messages appears:

DLS is set

The message means that the DLS option is turned on. Load sharing is reconfigured with every change in the fabric.

- DLS is not set

The message means that the DLS option is turned off. Load sharing is only reconfigured when the switch is rebooted or an Fx_Port comes up.

- 3. Enter the disset command to enable Dynamic Load Sharing when a fabric change occurs.
- 4. Enter the dlsReset command to disable Dynamic Load Sharing.

Load sharing is performed only at boot time or when an Fx_Port comes up.

Example

```
switch:admin> dlsshow
DLS is not set
switch:admin> dlsset
Committing configuration...done.
switch:admin> dlsshow
DLS is set
switch:admin> dlsreset
Committing configuration...done.
```

Viewing Routing Path Information

Step 3 is switch dependent. One version of the step applies to SilkWorm 3250/3850/3900 switches; one version applies to SilkWorm 12000/24000 directors.

- 1. Connect to the switch as the administrator.
- 2. Enter the topologyshow command to display the fabric topology, as it appears to the local switch.

The following entries appear:

- Local Domain Domain number of local switch.
- Domain Domain number of destination switch.
- Metric Cost of reaching destination domain.
- Name The name of the destination switch.
- Path Count The number of currently active paths to the destination domain.
- Hops The maximum number of hops to reach destination domain.
- Out Port The Port that incoming frame will be forwarded to, in order to reach the destination domain.
- In Ports- Input ports that use the corresponding Out Port to reach the destination domain. This
 is the same information provided by portrouteshow and urouteshow.
- Total Bandwidth The maximum bandwidth of the out port.
- Bandwidth Demand The maximum bandwidth demand by the in ports.
- Flags Always 'D', indicating a dynamic path. A dynamic path is discovered automatically by the FSPF path selection protocol.

```
switch:admin> topologyshow
2 domains in the fabric; Local Domain ID: 1
Domain: 6
Metric: 500
Name: switch
Path Count: 4
Hops: 1
Out Port: 60
In Ports: None
Total Bandwidth: 2 Gbps
Bandwidth Demand: 0 %
Flags: D
Hops: 1
Out Port: 61
In Ports: None
Total Bandwidth: 2 Gbps
Bandwidth Demand: 0 %
Flags: D
Hops: 1
Out Port: 62
In Ports: None
Total Bandwidth: 2 Gbps
Bandwidth Demand: 0 %
Flags: D
Hops: 1
Out Port: 58
In Ports: None
Total Bandwidth: 2 Gbps
Bandwidth Demand: 0 %
Flags: D
```

3. Use the **urouteshow** command

(Use for SilkWorm 3250/3850/3900)

Use the following syntax

urouteshow [portnumber][, domainnumber] command to display unicast routing
information.

(Use for SilkWorm 12000/24000)

Use the following syntax

urouteshow [slot/][portnumber][, domainnumber] command to display unicast routing information. The following entries appear:

- Local Domain Domain number of local switch.
- In Ports Port from which a frame is received.
- Domain Destination domain of incoming frame.
- Out Port The Port that incoming frame will be forwarded to, in order to reach the destination domain.
- Metric Cost of reaching destination domain.
- Hops The maximum number of hops to reach destination domain.
- Flags -Indicates if route is dynamic (D) or static (S). A dynamic route is discovered automatically by the FSPF path selection protocol. A static route is assigned using the command **urouteconfig**.
- Next (Dom, Port) Domain and port number of the next hop. These are the domain number and the port.

Example

The example below displays the routing information of all the active ports:

Example

The example below displays the routing information for port 11 on slot 1.

Example

The example below displays the routing information of port 11 to domain 4 only:

Viewing Routing Information Along a Path

- 1. Connect to the switch as the administrator.
- 2. Enter the **pathInfo** command to display various routing-oriented information for each hop on a path.

The following entries appear:

Нор	The hop number. The local switch is hop 0.
In Port	The port that the frames come in from on this path. For hop 0, the source port.
Domain ID	The domain ID of the switch.
Name	The name of the switch.
Out Port	The output port that the frames use to reach the next hop on this path. For the last hop, the destination port.
BW	The bandwidth of the output ISL, in Gb/sec. It does not apply to the embedded port.
Cost	The cost of the ISL used by FSPF routing protocol. It only applies to an E_{Port} .

Paths always originate on the local switch. The path destination can be specified by domain or port. By default, the path will be the path taken by traffic from the source to destination port, but you can also specify all or portions of a path. Refer to the *Fabric OS Reference Manual*, "pathInfo" section for details.

Help Commands

Each Fabric OS command provides Help information that displays what the command does, explains the possible operands, displays the command level, and sometimes provides additional information.

Displaying Help Information for a Command

To display help information about a command:

- 1. Connect to the switch as the administrator.
- 2. Enter the help command using the following syntax at the command line:

help command

where *command* is the name of the command you would like help with.

switch:admin> help configure				
Administrative Commands configure(1m)				
NAME configure - change system configuration settings				
SYNOPSIS configure				
AVAILABILITY admin				
DESCRIPTION This command changes some system configuration settings, including:				
o Arbitrated loop settings				
o Switch fabric settings				
o System services settings				
o Virtual channel settings				
<output truncated=""></output>				

Additional Help Topics

The help command lists most of the files. There are also commands that provide additional help files for specific topics. The following is not a complete list.

For example:

- diagHelp
 Print diagnostic help information
- **fwHelp** Print Fabric Watch help information
- licenseHelp Print license help information
- perfHelp Print Performance Monitoring help information
- routeHelp Print routing help information
- trackChangesHelp Print Track Changes help information

Reading Hexadecimal Port Diagrams

Many of the commands, such as **bcastshow**, **portlogshow** and **portlogdump**, return port diagrams in hexadecimal format.

The following example shows the **bcastshow** command and a member port list, member ISL port list, and static ISL port list in hexadecimal format.

switch:admin> bcastshow					
Group	Member Ports	Member ISL Ports	Static ISL Ports		
256	0x00000000	0x00000000	0x00000000		
	0x00000000000000000000000000000000000	0x00000000	0x0000000		
	0x0000001	0x00000000	0x0000000		
	0x00012083				
switch	admin>				

To read the Hexadecimal port diagrams, they must be converted in to binary notation. Each Hexadecimal value represents four binary values. Each Hexadecimal value is converted in to a group of four binary values that represent four ports, as follows:

Hex value = Binary value

0	= 0000
1	= 0001
2	= 0010
3	= 0011
4	= 0100
5	= 0101
6	= 0110
7	= 0111
8	= 1000
9	= 1001
A	= 1010
В	= 1011
C	= 1100
Ľ	0 = 1101
E	= 1110
F	= 1111
n	nce the Hexadecimal is converted in to a binary bit map, each bit represents a port, where a value of 1 heans yes and a value of 0 means no. The bit map is read from right to left, that is, the least significant it represents port 0.

n and a value of 0 means no. The bit map is read from right to left, that is, the least significant b ents port 0.

For example, if the member port value is displayed in hex as:

0x00012083

This corresponds to a binary bit map of the member ports as follows:

0000 0000 0000 0001 0010 0000 1000 0011

This bit map displays the member ports as port 0, 1, 7, 13, and 16. Note that each switch has a hidden internal port (in the example above port 16) which is always a member of a broadcast group.

This chapter provides information regarding security features that are standard in the Fabric OS. Refer to the *Secure Fabric OS User's Guide* for information about licensed security features.

The following standard fabric security information is provided:

- "Using Secure Shell (SSH)," on page 3-1
- "Using Secure Shell (SSH)," on page 3-1
- "Disabling the Telnet Interface," on page 3-2
- "Disabling the Telnet Interface," on page 3-2
- "Listeners," on page 3-2
- "Passwords," on page 3-3
- "Accessing Switches and Fabrics," on page 3-3
- "Comparing Password Behavior Between Firmware Versions," on page 3-4
- "Modifying a Password"
- "Setting Recovery Passwords"
- "About Forgotten Passwords," on page 3-18

The following standard security information is specific to v4.2.0 firmware.

Standard security in FOS depends on account and password management. The information in this chapter discusses security that is available without Secure Fabric OS. For information regarding Secure Fabric OS, refer to the *Secure Fabric OS User's Guide*.

Using Secure Shell (SSH)

Fabric OS v4.2.0 uses a secure shell (SSH) to support encrypted sessions, except DES encryption, to the switch. SSH uses strong encryption to secure passwords.

SSH encrypts all messages including the client's transmission of password during login. The SSH package contains a daemon (sshd), which runs on the switch. The daemon supports a wide variety of encryption algorithms such as Blowfish-CBC and AES.

Fabric OS v4.2.0 supports SSH protocol v2.0 (ssh2). For more information on SSH, see the SSH IETF website:

http://www.ietf.org/ids.by.wg/secsh.html

Refer to *SSH, The Secure Shell; The Definitive Guide*. By Daniel J. Barrett, Richard Silverman; Published by O'Reilly.

Note

The FTP protocol is not secure. When you FTP to or from the switch, the contents are in clear text. This includes the remote FTP server's login and password. This limitation affects the following commands: **savecore**, **configupload**, **configdownload**, and **firmwaredownload**.

Brocade Fabric OS v4.2.0 comes with the SSH server preinstalled; however, you must select and install the SSH client. For information on installing and configuring the F-Secure SSH client, see the website: http://www.f-secure.com

Disabling the Telnet Interface

Brocade Fabric OS v4.2.0 has telnet enabled by default. To prevent users from passing clear text passwords over the network when they connect to the switch, you can disable the telnet interface as follows:

- 1. Connect to the switch as the administrator.
- 2. Enter configure [telnetd] at the command line.

The Telnet interface is disabled. You can run the **configure** command with the switch enabled. For more information on the **configure** command, see the *Fabric OS Reference Guide*.

SNMP, HTTP, API, RSNMP, WSNMP, SES, and MS are managed through their respective policies when security is enabled. See the *Secure Fabric OS User's Guide* for information.

Listeners

Product Name blocks the Linux subsystem listener applications that are not used to implement supported features and capabilites. Table 3-1 lists the listener applications that the SilkWorm 12000/24000 and SilkWorm 3250/3850/3900 switches block or do not start.

Listener Application	SilkWorm 12000/24000 Directors	SilkWorm 3250/3850/3900 Switches
chargen	Do not start	Do not start
echo	Do not start	Do not start
daytime	Do not start	Do not start
discard	Do not start	Do not start
ftp	Do not start	Do not start
rexec	Block with packet filter	Do not start
rsh	Block with packet filter	Do not start

Table 3-1Blocked Listener Applications

Listener Application	SilkWorm 12000/24000 Directors	SilkWorm 3250/3850/3900 Switches
rlogin	Block with packet filter	Do not start
time	Block with packet filter	Do not start
rstats	Do not start	Do not start
rusers	Do not start	Do not start

 Table 3-1
 Blocked Listener Applications

Passwords

There are four accounts for each logical switch. SilkWorm 12000 switches have two logical switches. They have four accounts for switch instance 0, and four accounts for switch instance 1. The account names are the same for the both switch instances. SilkWorm 3250/3850/3900/24000 have only one logical switch, and one set of accounts.

At each account level, you can change passwords for that account and all accounts that have lesser privileges.

Note

There is one exception to the password structure; an admin level user can change the root password by entering the command **passwd** "root" and entering the old root password at the prompt.

There are four levels of account access:

- root—not recommended
- factory—not recommended
- admin—recommended for administrative operations
- user-recommended for nonadministrative operations

If you are connected as administrator, you can change the passwords for both administrator and user.

In SilkWorm 3250/3850/3900/24000 switches, for one logical switch, the root, factory, admin, and user accounts need one password each.

SilkWorm 12000 switches have two sets of passwords because SilkWorm 12000 switches have two logical switches (logical switch 0 and logical switch 1).

Note

Record your passwords and store in a secure place, as recovering passwords require significant effort.

Accessing Switches and Fabrics

This section lists the defaults for accessing hosts, devices, switches, and zones. It includes the following sections:

• "Hosts," on page 3-4

3

- "Devices," on page 3-4
 - "Switch Access," on page 3-4
 - "Zoning," on page 3-4

Hosts

- Any host can access the fabric by SNMP
- Any host can telnet to any switch in the fabric
- Any host can establish an HTTP connection to any switch in the fabric
- Any host can establish an API connection to any switch in the fabric

Devices

- All device ports can access SES
- All devices can access the management server
- Any device can connect to any FC port in the fabric

Switch Access

- Any switch can join the fabric
- All switches in the fabric can be accessed through serial port

Zoning

• Node WWNs can be used for WWN-based zoning

Comparing Password Behavior Between Firmware Versions

The sections provide detailed password information for v2.6/3.0, v2.6.2/3.1, v4.0 and v4.1.0 and above, and v2.6:

- "Password Management Information," on page 3-5
- "Password Prompting Behaviors," on page 3-8
- "Password Recovery Options," on page 3-10
- "Password Migration During Firmware Upgrade/Downgrade," on page 3-11

Password Management Information

The following Account/Password Matrix describes the password standards and behaviors between v2.6/ 3.0, v2.6.2/3.1, v4.0, v4.1.0, and v4.2.0 and above.

Торіс	V2.6/3.0	V2.6.2/3.1	V4.0	V4.1.0 and later
Number of accounts on the switch	4	4 4, chassis based		12000 - 8 for the chassis, 4 per switch 3250/3850/3900/ 24000 - 4
Account login names	root, factory, admin, user	root, factory, admin, user	root, factory, admin, user	root, factory, admin, user.
Account name changing feature	Yes, when Secure FabOS is disabled; No, when Secure FabOS is enabled.	Yes, when Secure FabOS is disabled; No, when Secure FabOS is enabled.	No	No, regardless of security mode.
Maximum and minimum amount of characters for a password	8 - 40 characters with printable ASCII	8 - 40 characters with printable ASCII	0 - 8 (Standard UNIX)	8 - 40 characters with printable ASCII
Can different switch instances use a different password for the same account login level? For example, the password for admin for switch 0 can be different from password for admin for switch 1.	n.a	n.a	No	Yes for 12000 switch. n.a for all other switches.
Does the root account use restricted shell?	No	No	No	No
When connecting to a factory installed switch, do you use the default passwords?	Yes	Yes	Yes	Yes

 Table 3-2
 Account/Password Characteristics Matrix

Торіс	V2.6/3.0	V2.6.2/3.1	V4.0	V4.1.0 and later
Does a user need to know the old passwords when changing passwords using the passwd command?	Yes, the old password is required to change any password, regardless of the level at which you connect.	Yes, the old password is required to change any password, regardless of the level at which you connect.	Yes, except when the root user changes another user's password. This is standard UNIX behavior; Fabric OS does not enforce any additional security.	Old password is required only when changing password for the same level user password. Changing password for lower level user doesn't require old password. For example, users connect as admin; old admin password is required to change the admin password. But old user password is not required to change the user password.

 Table 3-2
 Account/Password Characteristics Matrix (Continued)

Торіс	V2.6/3.0	V2.6.2/3.1	V4.0	V4.1.0 and later
Can "passwd" change higher-level passwords? For example, can admin change root password?	No. If users connect as admin, the users can only change admin and user passwords; the users cannot change factory, nor root password.	No. If users connect as admin, the users can only change admin and user passwords; the users cannot change factory, nor root password.	Yes, but will ask for the "old password" of the higher- level account (example "root").	Yes; if users connect as admin, they can change the root, factory, and admin passwords. However, if one connects as user, one can only change the user password.
Can API change passwords?	API can change admin passwords on any switch, when security mode is disabled. It can only change the admin password on the Primary FCS switch when security mode is enabled.	API can change admin passwords on any switch, when security mode is disabled. It can only change the admin password on the Primary FCS switch when security mode is enabled.	Yes, only for admin.	Yes, only for admin.
Can Web Tools change passwords?	When security mode is disabled, users can change the admin and user passwords on all switches using Web Tools. When security mode enabled, users can only change the admin and user passwords on the Primary FCS switch using Web Tools.	When security mode is disabled, users can change the admin and user passwords on all switches using Web Tools. When security mode enabled, users can only change the admin and user passwords on the Primary FCS switch using Web Tools.	No	No
Can SNMP change passwords?	No	No	No	No

 Table 3-2
 Account/Password Characteristics Matrix (Continued)

Password Prompting Behaviors

The following table describes the expected password prompting behaviors between v2.6/3.0, v2.6.2/3.1, v4.0, v4.1.0 and v4.2.0.

Торіс	V2.6/3.0	V2.6.2/3.1	V4.0	V4.1.0 and later
Must <i>all</i> password prompts be completed for <i>any</i> change to take effect?	Yes. If users only provide some of the passwords before exiting, no passwords will be changed. Prompting will continue on the next appropriate login.	Yes. If users only provide some of the passwords before exiting, no passwords will be changed. Prompting will continue on the next appropriate login.	No. Partial changes of all four passwords are allowed.	No. Partial changes of all four passwords are allowed.
When does the password prompt appear?	When users connect as root, factory, or admin.	When users connect as root, factory, or admin.	When users connect as root, factory, or admin, the accounts with default password will be prompted for change. The accounts with non-default password will NOT be prompted.	When users connect as root, factory, or admin, the accounts with default password will be prompted for change. The accounts with non-default password will NOT be prompted.
Is a user forced to answer password prompts before getting access to the firmware?	No, users can type in ctrl-C to get out of password prompting.	No, users can type in ctrl-C to get out of password prompting.	No, users can type in ctrl-C to get out of password prompting.	No, users can type in ctrl-C to get out of password prompting.
Do users need to know the old root password when answering prompting?	No	No	Yes in v4.0 *No in v4.0.2 only	No
Are new passwords forced to be set to something different than the old passwords?	Yes	Yes	Yes	Yes

 Table 3-3
 Password Prompting Matrix

Торіс	V2.6/3.0	V2.6.2/3.1	V4.0	V4.1.0 and later
Is password prompting disabled when security mode is enabled?	Yes	Yes	Yes	Yes
Is the " passwd " command disabled until the user has answered password prompting?	True	True	False	True
Does password prompting reappear when passwords are changed back to default using the " passwd " command?	No	No	Yes	No
Does password prompting reappear when passwords are changed back to default using the " passwdDefault " command?	Yes	Yes	Yes	Yes.

 Table 3-3
 Password Prompting Matrix (Continued)

Password Recovery Options

The following table describes the options available when one or more types of passwords are lost.

Торіс	V2.6/3.0	V2.6.2/3.1	V4.0	V4.1.0 and later
If all the passwords are forgotten, what is the password recovery mechanism? Are these procedures non-disruptive recovery procedures?	The user has to get a special password recovery firmware based on the WWN of the switch from Tech Support, and then download the special firmware; this resets all passwords to default. The procedures are disruptive.	The user has to get a special password recovery firmware based on the WWN of the switch from Tech Support, and then download the special firmware; this resets all passwords to default. The procedures are disruptive.	Contact Technical Support. A non- disruptive procedure is available.	Contact Technical Support. A non- disruptive procedure is available.
If a user has only the root password, what is the password recovery mechanism?	Use "passwdDefault" command to set all passwords to default.	Use " passwdDefault " command to set all passwords to default.	Root can change any password by using the " passwd " command.	Use passwd command to set other passwords. Use " passwdDefault " command to set all passwords to default.
How to recover boot PROM password?	N/A	N/A	N/A	Contact Technical Support. Refer to "About Boot PROM Passwords" to set the boot PROM and recovery passwords.
How do I recover a user, admin, or factory password?	Refer to "Recovering a User, Admin, or Factory Password".	Refer to "Recovering a User, Admin, or Factory Password".	Refer to "Recovering a User, Admin, or Factory Password".	Refer to "Recovering a User, Admin, or Factory Password".

 Table 3-4
 Password Recovery Options

Password Migration During Firmware Upgrade/ Downgrade

The following table describes the expected outcome of password settings when upgrading or downgrading firmware for v2.6/3.0, v2.6.2/3.1, v4.0, v4.1.0, and v4.2.0.

Торіс	V2.6/3.0	V2.6.2/3.1	V4.0.x	V4.1.0 or later
Passwords used when upgrading to a newer firmware release for the first time.	For first time firmware upgrades from v2.4.x to v2.6.0x, the v2.4.x passwords are preserved.	For first time firmware upgrades from v3.0.x to v3.1.2, the v3.0.x passwords are preserved.	N/A	For first time firmware upgrades from v4.0.x to v4.2.0, the v4.0.x passwords are preserved.
Passwords preserved during subsequent firmware upgrades	For second firmware upgrades (and each subsequent upgrade) from v2.4.x to v2.6.0x, the passwords that were last used in v2.6.0x are effective.	For second firmware upgrades (and each subsequent upgrade) from v3.0.x to v3.1, the passwords that were last used in v3.1 are effective.	N/A	For second firmware upgrades (and each subsequent upgrade) from v4.0.x to v4.2.0 the passwords that were last used in v4.0.x are effective.

 Table 3-5
 Password Migration Behavior During Firmware Upgrade/Downgrade

Торіс	V2.6/3.0	V2.6.2/3.1	V4.0.x	V4.1.0 or later
Is downgrading to an older firmware version (which does not support Secure Fabric OS) allowed when security mode is enabled?	Yes. FirmwareDownload does not prevent such downgrades.	Yes	N/A	Yes
Passwords used if downgrading to an older firmware for the first time	When downgrading firmware from v2.6.0x to v2.4.x for the first time, the default passwords are used.	When downgrading firmware from v3.1.2 to v3.0.x for the first time, the default passwords are used.	N/A	If the switch had v4.2.0 factory installed, a firmware downgrade from v4.2.0 to v4.0.x uses the default passwords.
When downgrading to an older firmware at subsequent times, which passwords will be used?	Firmware downgrades from v2.6 to v2.4 use the previous v2.4 passwords (the passwords used before the firmware had been upgraded to v2.6).	Firmware downgrades from v3.1 to v3.0 use the previous v3.0 passwords (the passwords used before the firmware had been upgraded to v3.1).	Firmware downgrades within 4.0.x use the old 4.0 passwords.	Firmware downgrades from v4.2.0 to v4.0.x use the previous v4.0.x passwords (the passwords used before the firmware had been upgraded to v4.2.0).
When downgrading then upgrading again, what passwords will be used?	When upgrading firmware for a second time, the old v2.6 or v3.1 passwords will be used (the passwords used before the firmware had been downgraded).	When upgrading firmware for a second time, the old v2.6 or v3.1 passwords will be used (the passwords used before the firmware had been downgraded).	When upgrading firmware for a second time, the old passwords will be used (the passwords used before the firmware had been downgraded).	When upgrading firmware for a second time, the old passwords will be used (the passwords used before the firmware had been downgraded). For a 4.0.x to 4.2.x, use the 4.0.x passwords

 Table 3-5
 Password Migration Behavior During Firmware Upgrade/Downgrade

Modifying a Password

There are four levels of account access. Refer to "Passwords," on page 3-3. To bypass the password prompt without completing the prompts, press CTRL + C.

- 1. Create a CLI connection to the switch.
- 2. Connect using the account for which you want to change the password.

At each account level, you can change passwords for that account and all accounts that have lesser privileges. Refer to "Passwords," on page 3-3.

3. Enter the passwd command and enter the requested information at the prompts.

You must enter the current password for the first account. Passwords do not have to contain upper/lower/non-alphanumeric characters.

If you are using Secure Fabric OS, new passwords are saved and distributed to all the switches in the fabric.

4. Repeat for all switches in the fabric.

Note

You cannot change account login names in standard or Secure Mode.

Setting Recovery Passwords

You can set a Boot PROM password and you can set a recovery password. It is recommended that you set both. This section includes the following topics:

- "About Boot PROM Passwords," on page 3-13
- "Setting Both the Boot PROM and the Recovery Passwords (SilkWorm 3250/3850/3900)," on page 3-14
- "Setting Both the Boot PROM and Recovery Passwords (SilkWorm 12000/24000)," on page 3-14
- "Setting the Boot PROM Password Only (SilkWorm 3250/3850/3900)," on page 3-15
- "Setting the Boot PROM Password Only (SilkWorm 12000/24000)," on page 3-17

About Boot PROM Passwords

Fabric OS v4.2.0 provides the option of setting the Boot PROM and Recovery passwords.

The Boot PROM and Recovery passwords provide an additional layer of security beyond the Root password.

- Setting a Boot PROM password protects the boot prompt from unauthorized use.
- Setting a Recovery password turns on the password recovery option, which requires a user to contact Technical Support before recovering a Root or Boot PROM password.

Note

Setting both the Boot PROM and Recovery passwords on all switches running Fabric OS v4.2.0 is strongly recommended. Not setting either of these passwords can compromise fabric security.

Setting Both the Boot PROM and the Recovery Passwords (SilkWorm 3250/3850/3900)

This section only applies to SilkWorm 3250, 3850 and 3900 switches.

Note

Setting the Boot PROM and Recovery passwords requires accessing the boot prompt, which stops traffic flow through the switch until the switch is rebooted.

- 1. Connect to the serial port interface as described in step 1 of "Setting the Boot PROM Password Only (SilkWorm 3250/3850/3900)".
- 2. Reboot the switch.
- 3. Press ESC within four seconds after the message "Press escape within 4 seconds..." displays.

The following options are available:

- 1) Start system.
- 2) Recovery password.
- 3) Enter command shell.
- Enter "2" at the prompt to set the Recovery password. The following message displays: "Recovery password is NOT set. Please set it now."
- 5. Enter the Recovery password.

The Recovery password must be between 8 and 40 alphanumeric characters. A random password that is 15 characters or longer is recommended for higher security. The firmware only prompts for this password once. It is not necessary to remember the Recovery password.

The prompt for the Boot PROM password displays: "New password:".

6. Enter the Boot PROM password, then re-enter when prompted. Record this password for future use.

The new passwords are automatically saved (saveenv command not required).

 Reboot the switch. Traffic flow resumes when the switch finishes rebooting.

Setting Both the Boot PROM and Recovery Passwords (SilkWorm 12000/24000)

This section only applies to SilkWorm 12000 and 24000 directors.

The Boot PROM and Recovery passwords must be set for each CP card on a SilkWorm 12000/24000 director.

- 1. Connect to the serial port interface on the standby CP card, as described in step 1 of "Setting the Boot PROM Password Only (SilkWorm 12000/24000)".
- 2. Connect to the active CP card by serial or telnet and enter the **hadisable** command to prevent failover during the remaining steps.

3. For a SilkWorm 12000, reboot the standby CP card by pressing the yellow ejector buttons at top and bottom of the CP card, then pressing both ejector handles back towards the switch to lock the card back into the slot.

For a SilkWorm 24000, reboot the standby CP card by sliding the On/Off switch on the ejector handle of the standby CP card to Off, and then back to On.

4. Press ESC within four seconds after the message "Press escape within 4 seconds..." displays.

The following options are available:

- 1) Start system.
- 2) Recovery password.
- 3) Enter command shell.
- Enter "2" at the prompt to set the Recovery password. The following message displays: "Recovery password is NOT set. Please set it now."
- 6. Enter the Recovery password.

The Recovery password must be between 8 and 40 alphanumeric characters. A random password that is 15 characters or longer is recommended for higher security. The firmware only prompts for this password once. It is not necessary to record the Recovery password.

The following prompt displays: "New password:".

7. Enter the Boot PROM password.

Record this password for future use. After you enter the boot PROM password, the switch automatically reboots.

New passwords are automatically saved (the saveenv command is not required).

- 8. Failover the active CP card by entering the **hafailover** command. Traffic flow through the active CP card resumes when the failover is complete.
- 9. Connect the serial cable to the serial port on the new standby CP card (previous active CP card).
- 10. Repeat step 2 through step 7 for the new standby CP card (each CP card has a separate Boot PROM password).
- 11. Connect to the active CP card by serial or telnet and enter the **haenable** command to restore high availability.

Setting the Boot PROM Password Only (SilkWorm 3250/3850/3900)

The option of setting the Boot PROM password only is available, but is not recommended. Refer to "Setting Both the Boot PROM and the Recovery Passwords (SilkWorm 3250/3850/3900)".

Note

Setting the Boot PROM password requires accessing the boot prompt, which stops traffic flow through the switch until the switch is rebooted.

- 1. Create a serial connection to the switch. If Secure Mode is enabled, connect to the Primary FCS switch. If the switch does not have a serial port, contact Technical Support.
 - a. Connect the serial cable to the serial port on the switch and to an RS-232 serial port on the workstation.

If the serial port on the workstation is RJ-45 instead of RS-232, remove the adapter on the end of the serial cable and insert the exposed RJ-45 connector into the RJ-45 serial port on the workstation.

- b. Disable any serial communication programs running on the workstation.
- c. Open a terminal emulator application (such as HyperTerminal on a PC, or TERM or Kermit in a Unix environment), and configure the application as follows:

In a Windows 95, 98, 2000, or NT environment:

Parameter	Value
Bits per second:	9600
Databits:	8
Parity:	None
Stop bits:	1
Flow control:	None

In a UNIX environment, enter the following string at the prompt:

tip /dev/ttyb -9600

- 2. Reboot the switch by entering the **reboot** command.
- 3. Press ESC within four seconds after the message "Press escape within 4 seconds..." displays.

The following options are available:

- 1) Start system.
- 2) Recovery password.
- 3) Enter command shell.
- 4. Enter "3" at the prompt to enter the command shell.
- 5. Enter **passwd** command at the prompt.

Note

This command is specific to the Boot PROM password when entered from the boot interface.

- 6. Enter the Boot PROM password at the prompt, then re-enter when prompted. The password must be 8 alphanumeric characters (any additional characters are not recorded).
- 7. Record this password for future use.
- 8. Enter the **saveenv** command to save the new password.
- 9. Reboot the switch by entering the **reset** command. Traffic flow resumes when the switch finishes rebooting.

Setting the Boot PROM Password Only (SilkWorm 12000/24000)

The option of setting the Boot PROM password only is available, but is not recommended. Refer to "Setting Both the Boot PROM and Recovery Passwords (SilkWorm 12000/24000)".

On the SilkWorm 12000 and 24000, the suggested procedure is to set the password on the standby CP, then failover; then set the password on the previously Active (now Standby) CP to minimize disruption to fabric.

The Boot PROM and Recovery passwords must be set for each CP card on a SilkWorm 12000 or 24000 director.

Note

Setting the Boot PROM password requires accessing the boot prompt, which stops traffic flow through the switch until the switch is rebooted.

- 1. Determine the active CP card by opening a telnet session to either CP card, connecting as admin, and entering the **hashow** command.
- 2. Connect to the active CP card by serial or telnet and enter the **hadisable** command to prevent failover during the remaining steps.
- Create a serial connection to the standby CP card as described in "Setting the Boot PROM Password Only (SilkWorm 3250/3850/3900)".
- 4. In SilkWorm 12000, reboot the standby CP card by pressing the yellow ejector buttons at top and bottom of the CP card, then pressing both ejector handles back towards the switch to lock the card back into the slot.

In SilkWorm 24000, reboot the standby CP card by sliding the On/Off switch on the ejector handle of the standby CP card to Off, and then back to On.

This causes the card to reset.

5. Press ESC within four seconds after the message "Press escape within 4 seconds..." displays.

The following options are available:

- 1) Start system.
- 2) Recovery password.
- 3) Enter command shell.
- 6. Enter "3" at the prompt to enter the command shell.
- 7. Enter **passwd** command at the prompt.

Note

This command is specific to the Boot PROM password when entered from the boot interface.

- 8. Enter the Boot PROM password at the prompt, then re-enter when prompted. The password must be 8 alphanumeric characters (any additional characters are not recorded).
- 9. Record this password for future use.

- 10. Enter the saveenv command to save the new password.
- 11. Reboot the standby CP card by entering the reset command.
- Failover the active CP card by opening a telnet session to the active CP card, connecting as admin, and entering the **hafailover** command. Traffic resumes flowing through the newly active CP card once it has completed rebooting.
- 13. Connect the serial cable to the serial port on the new standby CP card (previous active CP card).
- 14. Repeat step 3 through step 11 for the new standby CP card (each CP card has a separate Boot PROM password).
- 15. Connect to the active CP card by serial or telnet and enter the **haenable** command to restore high availability.

About Forgotten Passwords

Passwords can be recovered as follows:

- If the User, admin, or Factory passwords are lost, but the Root password is known, follow the steps described in "Recovering a User, Admin, or Factory Password".
- If the Root or Boot PROM password is lost, contact Technical Support.

Recovering a User, Admin, or Factory Password

The User, admin, and Factory passwords can be recovered if the Root password is known. The following procedure applies to all switch types and Fabric OS versions.

- 1. Open a CLI connection (serial or telnet) to the switch. If the Secure Mode of the Secure Fabric OS feature is enabled, connect to the Primary FCS switch.
- 2. Connect as Root.
- 3. Enter the command corresponding to the type of password lost:
 - passwd user
 - passwd admin
 - passwd factory
- 4. Enter the requested information at the prompts.

Recovering a Forgotten Root or Boot PROM Password

To recover a lost Boot PROM password, contact Technical Support.

This chapter provides information on using the command line interface (CLI) within the Fabric OS to download firmware on the Brocade 3250, 3850, and 3900 switches and the Brocade 12000 and 24000 directors. It also includes information on downloading the firmware using the Brocade Advanced Web Tools or the Brocade Fabric Manager GUIs.

Note

The Brocade SilkWorm 3250 and 3850 switches, and the Brocade SilkWorm 24000 director do not run versions of the Brocade Fabric OS prior to v4.2.0.

Refer to the following sections for specific firmware upgrade information:

- "Upgrading the SilkWorm 3250, 3850, and 3900 Using the CLI," next
- "Upgrading the SilkWorm 12000/24000 Using the CLI" on page 4-4
- "Using Advanced Web Tools to Upgrade Firmware" on page 4-14
- "Using Fabric Manager to Upgrade Firmware," on page 4-16

Upgrading the SilkWorm 3250, 3850, and 3900 Using the CLI

The SilkWorm 3250, 3850, and 3900 maintain a primary and secondary partition for firmware. The **firmwaredownload** command downloads only to the secondary partition. The **firmwaredownload** command also has an auto-commit option (which is the default) that automatically commits the firmware to both partitions during the download process. If you override the auto-commit option (on the command line), you must execute this command on the SilkWorm 3250, 3850, or 3900 manually (not recommended for normal operation). After a reboot, the partitions are swapped.

Before starting a firmware download, it is highly suggested the switch is connected by console cable to a standby CP running session capture. The information collected may be useful if needed for troubleshooting purposes.

Use the following procedure to download and commit a new firmware version to both partitions of flash memory.

To upgrade or restore the switch firmware:

1. Consider the current firmware version of the switch (see Table 4-1 on page 4-4 for the SilkWorm 3900 and Table 4-2 on page 4-4 for the SilkWorm 3250 and 3850).

Note

All adjacent switches (any switch connected directly to the SilkWorm 3250, 3850, or 3900) must be running firmware v2.6.1, v3.1, or v4.1.0 or higher (as appropriate to the hardware type).

- 2. Verify that the FTP service is running on the host workstation (or on a windows machine).
- 3. Connect to the switch as the admin user.
- 4. Enter the following command at the command line (double-quotes are optional in 4.x firmware):

firmwaredownload "hostIPaddr", "user", "path_filename", "password"

- hostIPaddr is the IP address of the host computer.
- user is the User ID used to connect to this computer.
- path_filename is the path location and filename of the new firmware file.
- password is the password for the user ID specified. (Note: the password can be NULL)
- 5. Enter Y for yes to continue with the reboot, when prompted.

or

Enter the **firmwaredownload** command to be prompted for parameters (see following example).

Example—for SilkWorm 3900

During a non-disruptive firmware download and activation on the SilkWorm 3250, 3850, or 3900, a proxy application standby service is used in place of a standby CP to facilitate the firmware download process. This service will send "HA State in sync" or "HA State out of Sync" messages as a result.

6. (Optional) Open another telnet session and enter the **firmwaredownloadstatus** command to monitor the status of the firmware download.

The switch will reboot and start the firmware commit after the firmware is downloaded.

Example—for SilkWorm 3900

```
switch3900:admin> firmwaredownloadstatus
[0]: Tue Nov 18 10:32:34 2003
cp0: Firmwaredownload has started.
[1]: Tue Nov 18 10:36:07 2003
cp0: Firmwaredownload has completed successfully.
[2]: Tue Nov 18 10:57:09 2003
cp0: Firmwarecommit has started.
[3]: Tue Nov 18 10:36:07 2003
cp0: Firmwarecommit has completed successfully.
[4]: Tue Nov 18 11:03:28 2003
cp0: Firmwaredownload command has completed successfully.
switch3900:admin>
```

7. Enter the firmwareshow command after the switch reboots and the firmware commit finishes.

The firmware level is displayed for both partitions.

Example—for SilkWorm 3900

```
switch3900:admin> firmwareshow
Primary partition: v4.2.0
Secondary Partition: v4.2.0
switch3900:admin>
```

Current Firmware (from)	Upgraded Firmware (to)	Web Tools	Command
v4.0.2	v4.0.2 through v4.2.0	Yes	firmwaredownload
v4.0.2a	v4.0.2a through v4.2.0	Yes	firmwaredownload
v4.0.2b	v4.0.2b through v4.2.0	Yes	firmwaredownload
v4.0.2c	v4.0.2c through v4.2.0	Yes	firmwaredownload
v4.0.2d	v4.0.2d through v4.2.0	Yes	firmwaredownload
v4.0.3	v4.0.3 through v4.2.0	Yes	firmwaredownload
v4.0.4	v4.0.4 through v4.2.0	Yes	firmwaredownload

 Table 4-1
 Firmware Upgrade Compatibility for the SilkWorm 3900

Table 4-2	Firmware Upgrade Compatibility for the SilkWorm 3250 and 3850
-----------	---

Current Firmware (from)	Upgraded Firmware (to)	Web Tools	Command		
v4.2.0	v4.2.0 through latest	Yes	firmwaredownload		

Upgrading the SilkWorm 12000/24000 Using the CLI

Fabric OS v4.2.0 enables you to nondisruptively download firmware to the SilkWorm 12000 and 24000 directors.

The following process describes the default behavior of the **firmwaredownload** command (without options) on a SilkWorm 12000 or 24000 director.

- Execute the firmwaredownload command on the active CP.
- The standby CP downloads firmware.
- The standby CP forces a failover so that it is now the active CP.
- The new standby CP (the active CP before the failover) downloads firmware.
- The new standby CP reboots.
- The firmwareCommit command runs automatically on both CPs.
- Enter the firmwaredownloadstatus command to view the firmware process.

The entire firmware activation process takes approximately 20 to 25 minutes (depending on the platform). If there is a problem, wait for the timeout.

If there is an error during **firmwaredownload** (such as an unexpected power outage), the command ensures that both partitions of a CP contain the same version of firmware. However, partitions in a different CP might contain different versions of firmware; in that event, rerun the firmware download process.

The SilkWorm 12000/24000 provides non-disruptive behavior provided both CP blades are installed and fully synchronized. Use the **haShow** command to confirm synchronization.

The SilkWorm 12000/24000 with a single CP must reboot to activate firmware. The process is disruptive.

Refer to the following sections for information about upgrading firmware on the SilkWorm 12000:

- "Upgrading Firmware on a Dual CP" on page 4-6
- "Upgrading Firmware on a Single CP" on page 4-10
- "Troubleshooting Firmware Downloads" on page 4-12

 Table 4-3
 Firmware Upgrade Compatibility for the SilkWorm 12000

Current Firmware (from)	New Firmware (to)	Where to Execute	Web Tools	Command
v4.0.0	v4.0.0 - v4.0.4	on each CP	No	firmwaredownload
v4.0.0a	v4.0.0a -v4.0.4	on each CP	No	firmwaredownload
v4.0.0b	v4.0.0b - v4.0.4	on each CP	No	firmwaredownload
v4.0.0c	v4.0.0c - v4.0.4	on each CP	No	firmwaredownload
v4.0.0d	v4.0.0d - v4.2.0	on active CP (manages both)	Yes	firmwaredownload
v4.0.0e	v4.0.0e - v4.2.0	on active CP (manages both)	Yes	firmwaredownload
v4.0.2	v4.0.2 - v4.2.0	on active CP (manages both)	Yes	firmwaredownload
v4.0.2a	v4.0.2a - v4.2.0	on active CP (manages both)	Yes	firmwaredownload
v4.0.2b	v4.0.2b - v4.2.0	on active CP (manages both)	Yes	firmwaredownload
v4.0.2c	v4.0.2c - v4.2.0	on active CP (manages both)	Yes	firmwaredownload
v4.0.3	v4.0.3 - v4.2.0	on active CP (manages both)	Yes	firmwaredownload
v4.0.4	v4.0.4 - v4.2.0	on active CP (manages both)	Yes	firmwaredownload
v4.1.x	v4.1.x - v4.2.0	on active CP (manages both)	Yes	firmwaredownload

Table 4-4 Firmware Upgrade Compatibility for the SilkWorm 24000

Current Firmware (from)	New Firmware (to)	Where to Execute	Web Tools	Command
v4.2.0	v4.2.0 through latest	on active CP (manages both)	Yes	firmwaredownload

Upgrading Firmware on a Dual CP

Note

The procedure below only applies to upgrading firmware from versions v4.0.0d or later on a SilkWorm 12000 director. When upgrading a SilkWorm 12000 that is running v4.0.0c or earlier, refer to the *Fabric OS Procedures Guide* that corresponds to that version of firmware.

The following firmware upgrade process is specific to the SilkWorm 12000.

The SilkWorm 12000 has four IP addresses: one for each switch (switch 0 and switch 1) and one for each of the two CPs (CP0 in slot 5 and CP1 in slot 6). When upgrading the firmware in the SilkWorm 12000, the firmwaredownload command will automatically load new firmware in to both the active CP and standby CP; this is the default behavior in v4.0.0d and later, and no special actions are required.

To upgrade the firmware on a SilkWorm 12000:

- 1. Verify that the FTP service is running on the host workstation (or on a Windows machine).
- 2. Telnet in to the SilkWorm 12000 as the admin user.

Example

switch:admin>

3. Telnet in to either logical switch 0 or 1.

Example

```
Telnet 192.168.174.91
```

4. Enter the haShow command to determine which CP is active, and which one is standby.

Also, confirm that the two CPs are in sync. CPs must be in sync to provide the non-disruptive download. If the two CPs are not in sync, and the current firmware version is 4.1.0 or later, the **hasyncstart** command may be used to synchronize the two CPs.

Example:

```
switch:admin> hashow
Local CP (Slot 6, CP1): Active
Remote CP (Slot 5, CP0): Standby
HA Enabled, Heartbeat up, HA State is in Sync
```

This message will vary, depending on the operating system you are currently running.

Note, in this example the active CP is CP1, and the standby CP is CP0.

5. Enter the ipaddrshow command to determine the IP address of the active CP.

4

4

Example

- 6. Connect to the active CP as the admin user.
- 7. If the active CP is currently running a version of firmware prior to 4.1.0, disable POST with the command **diagDisablePost**.
- 8. Enter the following at the command line (double-quotes are optional in 4.x firmware):

firmwaredownload "hostIPaddr", "user", "path_filename", "password"

- hostIPaddr is the IP address of the host computer.
- user is the User ID used to connect to this computer.
- path_filename is the path location and filename of the new firmware file.
- password is the password for the user ID specified. (Note: the password can be NULL)

or

Enter the firmwaredownload command to be prompted for parameters.

9. Enter Y for yes to continue with the reboot, when prompted.

The firmware is downloaded onto both CPs, one at a time. During the process, the active CP is rebooted and existing services may be disrupted momentarily.

Example

4

```
switch:admin> firmwaredownload
This command will upgrade both CPs in the switch. If you
what to upgrade a single CP only, please use -s option.
You can run firmwareDownloadStatus from a telnet session
to get the status of this command.
This command will cause the active CP to reset. This will
cause disruption to devices attached to both switch 0 and
switch 1 momentarily and will require that existing telnet
sessions be restarted.
Do you want to continue [Y]: y
Server Name or IP Address: 192.168.174.91
User Name: johndoe
File Name: /v4.2.0/release.plist
Password:****
FirmwareDownload has started on Active CP. It may take up to 10 minutes.
Please use firmwareShow to see the firmware status.
```

10. Enter the **firmwaredownloadstatus** command in a new session to monitor the firmwaredownload status.

After the firmware is downloaded, a firmware commit is started on both CPs and both partitions.

Example

```
switch:admin> firmwaredownloadstatus
[0]: Tue Nov 18 15:18:56 2003
cp0: Firmwaredownload has started on Standby CP. It may take up to 10
minutes.
[1]: Tue Nov 18 15:24:17 2003
cp0: Firmwaredownload has completed successfully on Standby CP.
[2]: Tue Nov 18 15:24:19 2003
cp0: Standby CP reboots.
[3]: Tue Nov 18 15:27:06 2003
cp0: Standby CP booted up.
[4]: Tue Nov 18 15:29:01 2003
cpl: Active CP forced failover succeeded. Now this CP becomes Active.
[5]: Tue Nov 18 15:29:05 2003
cpl: Firmwaredownload has started on Standby CP. It may take up to 10
minutes.
[6]: Tue Nov 18 15:34:16 2003
cpl: Firmwaredownload has completed successfully on Standby CP.
[7]: Tue Nov 18 15:34:19 2003
cp1: Standby CP reboots.
[8]: Tue Nov 18 15:36:59 2003
cpl: Standby CP booted up with new firmware.
[9]: Tue Nov 18 15:37:04 2003
cpl: Firmwarecommit has started on both Active and Standby CPs.
[10]: Tue Nov 18 15:42:48 2003
cpl: Firmwarecommit has completed successfully on Active CP.
[11]: Tue Nov 18 15:42:49 2003
cp1: Firmwaredownload command has completed successfully.
```

11. If it was necessary to disable POST in step 7, enable POST with the command diagEnablePost.

12. Enter the firmwareshow command to display the new firmware versions.

Example

Upgrading Firmware on a Single CP

Warning

Though it is possible to download firmware to one CP at a time, is not recommended. We recommend that both CPs be upgraded at the same time so they are consistent. You should only use the following procedure if instructed to do so by your service provider.

When the two CPs are not running the same firmware versions, it may be necessary to disable one or the other to maintain fabric stability. For information on the commands used to achieve this, refer to the **hadisable** and **hafailover** commands in the *Fabric OS Command Reference Manual*.

The following procedure allows you to perform a firmware download on a single CP:

- Upgrade firmware on a single CP on a SilkWorm 12000 or 24000
- Select a full-install, auto-reboot, and auto-commit (only the "-s" option is required on the command line).

To run the firmwaredownload command on a single CP in the SilkWorm 12000/24000:

1. Telnet in to the SilkWorm 12000 or 24000 as admin.

Example

switch:admin>

Note

In this example, the active CP is CP1, and the standby CP is CP0.

2. Execute the hashow command to determine which CP is the active and which one is the standby.

Example

```
switch:admin> hashow
Local CP (Slot 5, CP0): Active
Remote CP (Slot 6, CP1): Standby, Healthy
HA enabled, Heartbeat Up, HA State in sync
```

This message varies, depending on the version of firmware that is currently installed.

3. Telnet in to the standby CP.

Example

Telnet 192.168.174.91

4. Use the **firmwaredownload -s** command to upgrade a new version of the firmware to the standby CP.

The *-s* option allows you to upgrade to a single CP on a SilkWorm 12000 or 24000 director, select a full-install, auto-reboot, and auto-commit. Place a space between the command and the option.

Example

```
switch: admin> firmwaredownload -s
Server Name or IP Address: 192.158.174.91
User Name:admin
File Name:/v4.2.0/release.plist
Password:*****
```

- 5. Enter the User name and the Host IP (FTP server).
- 6. Answer the prompts as they appear. The following are the recommended responses:
 - a. Answer Y (yes) to Full Install. Answering no to this prompt can cause problems with the CP.
 - b. Answer Y (yes) to Auto Commit if you want the firmware to be committed automatically after download. If you answer no, you must manually enter the **firmwarecommit** command.
 - c. Answer Y (yes) to reboot the system after download if you want to enable auto-reboot.

Example

```
Full Install (Otherwise upgrade only) [Y]: Y
Do Auto Commit after reboot [Y]: Y
Reboot system after download [N]: Y
```

The standby CP reboots. If the auto-reboot option was not selected at the prompt, you must manually reboot.

- 7. Wait for the firmware download to complete. Use the **firmwareDownloadStatus** command in a new session to check the status.
- 8. Enter the hafailover command to invoke a fail over of the standby CP.
- 9. Wait for the two CPs to come back into sync (use the hashow command to verify).
- 10. Repeat the firmware download procedure on the new standby CP when the process is completed on the first CP.

Troubleshooting Firmware Downloads

A firmware download can fail for many reasons, such as a failed network connection, a failed FTP server, or an incorrect path to the firmware file. In most cases, the firmware will not be affected. Corrections can be made as necessary (check the Ethernet cables, check the file paths, etc.), and then run the **firmwaredownload** command again.

Note

Do not perform a firmware download while the switch is running POST. If a firmwaredownload is attempted on SilkWorm 12000 or 24000 director while POST is running, it may fail because the CPs cannot synchronize.

1. Enter the firmwareshow command to see if both CPs have the same firmware.

Example—for SilkWorm 12000

In this example, the active CP has the old version of firmware; the standby CP has the new version.

2. Decide which firmware version you want to be applied to both CPs. In other words, decide if you want to continue with the upgrade, or downgrade back to the old firmware.

For this scenario, we will assume you are continuing with the upgrade to the newer firmware.

3. Telnet into the CP that contains the firmware you do not want.

For this example you would telnet into CP0, which contains the old firmware.

4. Enter the firmwaredownload -s command to download firmware to the single CP.

Example

```
switch: admin> firmwaredownload -s
Server Name or IP Address: 192.158.174.91
User Name:admin
File Name:/v4.2.0/release.plist
Password:*****
```

5. Enter the User name and the Host IP (FTP server).

- 6. Answer the prompts as they appear. The following are the recommended responses:
 - a. Answer Y (yes) to Full Install. Always answer Y to this prompt, unless specifically requested by Technical Support.
 - b. Answer Y (yes) to Auto Commit if you want the firmware to be committed automatically after download. If you answer no, you must manually enter the **firmwarecommit** command.
 - c. Answer Y (yes) to reboot the system after download if you want to enable auto-reboot.

Example

```
Full Install (Otherwise upgrade only) [Y]: Y
Do Auto Commit after reboot [Y]: Y
Reboot system after download [N]: Y
```

The standby CP reboots. If the auto-reboot option was not selected at the prompt, you must manually reboot.

7. Wait for the firmware download to complete. Use the **firmwareDownloadStatus** command in a new session to check the status.

Example—for SilkWorm 12000

8. Enter the hafailover command to invoke a fail over of the standby CP.

Wait for the two CPs to come back into sync (use the hashow command to verify).

Using Advanced Web Tools to Upgrade Firmware

Note

You cannot use Advanced Web Tools to upgrade firmware prior to Fabric OS v4.0.0.d. Refer to Table 4-1 on page 4-4 for a complete list of the firmware compatibility for the SilkWorm 3900 switch; Table 4-2 on page 4-4 for the SilkWorm 3250 and 3850 switches; Table 4-3 on page 4-5 for the SilkWorm 12000 director; and Table 4-4 on page 4-5 for the SilkWorm 24000 director.

To upgrade the firmware using Advanced Web Tools for all v4.x platforms, perform the following steps:

- 1. Launch Advanced Web Tools.
- 2. Access the Switch Admin window (refer to Figure 4-1).
- 3. Enter the admin user name and password.
- 4. Select the Upload/Download tab.
- 5. Click the Firmware Download radio button.
- 6. Select the *FTP transfer protocol* from the drop-down menu. FTP is the only supported transfer protocol in Fabric OS v4.2.0.
- 7. Enter the User Name, Password, and Host IP information.
- 8. Enter the fully qualified path (*Filename*) to the firmware file.
- 9. Click the *Apply* button.

🎒 Switch Admin - Microsof	't Internet Explorer provided by SBC Yahoo! DSL	
SwitchName: meteor132	DomainID: 6 VWVN: 10:00:00:60:69:80:04:56 Thu Dec 18 (2003, 3	8:59 PM
License Admin I Switch Information	Port Setting Routing Extended Fabric Configure Trunk Information	
Function • Firmware Download	C Config Upload to Host C Config Download to Switch	
Host Details Protocol ftp	Full Install 🔽 Reboot after download 🔽 AutoCommit 🔽	
User Name Password		
	Firmware Download Status:	
	Apply Close Reset	
Switch Administration opened	비: Thu Dec 18 2003, 3:57 PM	
Enter the Password		

Figure 4-1 Web Tools Firmware Download Interface

Using Fabric Manager to Upgrade Firmware

To upgrade firmware simultaneously on multiple switches (5 maximum), you must use Fabric Manager (optionally licensed software).

The procedure described in this section provides basic instructions for downloading firmware to multiple switches using Fabric Manager. For detailed information, refer to the *Fabric Manager User's Guide*.

Before you download the firmware (Fabric OS v4.2.0), verify the following:

- You have the Fabric Manager software.
- Each switch you want to upgrade supports the potential firmware download.
- Any switches that you want to reboot simultaneously must reside on the same fabric.

Follow these steps to perform a firmware download to multiple switches concurrently and (optionally) reboot the switches simultaneously:

- 1. Launch Fabric Manager.
- 2. Log in to the switches that you want to upgrade (5 maximum).
- 3. From the Tools menu, select Firmware download to switches...

The Firmware download to switches window opens (see Figure 4-2).

Firmware download to switches	1	Remote User N	ame:		_0
Firmware file:	ord Required for FTP:		r	Save settings	Browse to options
⊙ Name C IP C WWN	Selected Switc	hes (0)			
SAN Elements Filter	IP Address	Switch Name	Firmware version	Status	Me
Pabrics web1231s1 → ☆ ↔ Web185 → ☆ swd185 → ☆ 2400 SwitchGroups				4	
	<u> </u>]			<u>•</u>
Downloa	Reboot	Fabric Login	Close Help		

Figure 4-2 Fabric Manager Firmware Download Interface

4. In the *Host IP address* field, enter the IP address of the FTP server with the firmware file. The IP address appears automatically if you have already configured file transfer options.

If you have not configured the file transfer options, check the *Save settings to options* checkbox to save your FTP settings as your file transfer options.

Note

You must click *Download* to commit the file transfer options. If for any other reason you close this window, the file transfer options will not apply.

- 5. In the Remote User Name field, enter your user ID for the FTP server.
- 6. In the *Firmware file* field, enter the path and name of the firmware file (in UNIX format), or click **Browse** to navigate to the file.
- 7. From the Select Protocol pulldown menu, select FTP.
- 8. In the Password Required for FTP field, enter your password.

4

- 9. From the *SAN Elements* tab, select the switches that you want to upgrade and move them to the *Selected Switches* window (5 maximum). You can select the switches using the following methods:
 - Navigate to the name of a switch, select it, and then click the right-pointing arrow.
 - Click-and-drag a switch from the SAN Elements tab to the Selected Switches window.
 - Press-and-hold **Ctrl**, select multiple switches within the *SAN Elements* tab, and then click the right-pointing arrow.
 - Press-and-hold **Ctrl**, select multiple switches within the *SAN Elements* tab, and then drag them into the *Selected Switches* window.
 - Select a fabric from the SAN Elements tab an drag it into the Selected Switches window.

Note

For a SilkWorm 12000 switch, you only need to add one logical switch. Fabric Manager will not let you download firmware to both logical switches. If you try to add both logical switches to the *Selected Switches* window, you will receive an error prompt when you click **Download**.

10. Click **Download**. When the download completes, click **Reboot**... to open the *Sequenced Reboot* window.

Note

If the switch loses network connectivity during the firmware download, the firmware download action will time out after approximately 25 minutes for switches running firmware v2.x/3.x and after 80 minutes for switches running firmware v4.x.

No error messages are returned when the firmware download process is interrupted.

4

This chapter provides information on working with the SilkWorm 12000 and 24000. For detailed information about the SilkWorm 12000 refer to the *SilkWorm 12000 Hardware Reference*. For detailed information about the SilkWorm 24000 refer to the *SilkWorm 24000 Hardware Reference*.

- "Ports on the SilkWorm 12000/24000," on page 5-1
- "Basic Blade Management," on page 5-3
- "Chassis Information," on page 5-4
- "Setting the Blade Beacon Mode," on page 5-8

Ports on the SilkWorm 12000/24000

In previous versions of the Fabric OS (v2.x and v3.x), the primary method for identifying a port within the fabric was the "domain, port" combination.

The following example shows the **zoneadd** command where a port is identified using the domain, and port number.

Example

switch:admin> zoneadd 1, 30

You cannot use this method of specifying a port in the SilkWorm 12000/24000 because of the addition of slots and the variable number of ports within a given domain. In Fabric OS v4.x, you can specify a particular port using one of the following methods:

- The slot/port method
- The port area number method. You can use this method only when implementing zoning commands.

Using the Slot/Port Method

A new method of selecting ports is required in the SilkWorm 12000 and SilkWorm 24000. To select a specific port you must identify both the slot number and port number you are working with.

When specifying a particular slot and port for a command, the slot number operand must be followed by the slash (/), and then a value for the port number. The following example shows how to enable port 4 on a switch blade in slot 2.

Example

Note

```
switch:admin> portenable 2/4
```


No spaces are allowed between the slot number, the slash (/), and the port number.

The SilkWorm 12000/24000 has a total of 10 slots:

- Slot number 5 and 6 are control processor cards
- Slot 1 4 and 7 10 are port cards.
- On each switch card, there are 16 ports counted from the bottom 0 to 15. A particular port card must be represented by both slot number (1 through 10) and port number (0 through 15).

The SilkWorm 12000 is divided into two logical switches, where slot 1 through 4 is logical switch 0 and slot 7 through 10 is logical switch 1. Typically you must be connected to the logical switch that represents the slot where you want to execute a command.

In the SilkWorm 24000, all the ports are tied to a single logical switch.

Using the Port Area Number Method

Some commands, such as the Zoning commands require you to specify ports using the Area Number method. In Fabric OS v4.x, each port on a particular domain is given a unique Area ID. How the port number is related to the Area ID depends upon the PID format used in the fabric.

When Core PID mode is in effect, the Area ID for port 0 is 0, for port 1, it is 1 and so forth. When Extended Edge PID mode is in effect, the Area ID is the port number plus 16 for ports 0 to 115. For port numbers higher than 115, the Area ID wraps around with port 116 having an Area ID of 0.

The 12000 chassis contains two logical switches. When using Core PID mode, the Area IDs for both logical 64-port switches range from 0 to 63. This means that both logical switch 0 and logical switch 1 have a port that is referenced with Area ID 0. Using the Extended Edge PID format, each logical switch has the Area IDs ranging from 16 to 79. (Since the 24000, 3900, 3850 and 3250 all support only one logical switch, the 12000 is the only chassis for which this exception applies.)

An Area ID for each port is unique inside each logical switch (that is, each assigned domain ID). These are two of the three parts of a 24-bit Fibre Channel Address ID: 8-bit Domain ID, 8-bit Area ID, 8-bit Port ID.

Use the **switchshow** command to display all ports on the current (logical) switch and their corresponding Area IDs.

Determining the Area Number (ID) of a Port

To determine the Area ID of a particular port:

- 1. Connect to the switch as the administrator.
- 2. Enter the **switchshow** command at the command line. This command displays all ports on the current (logical) switch and their corresponding Area IDs.

Basic Blade Management

For the purposes of this section, Basic Blade Management refers to:

- "Disabling a Blade," on page 5-3
- "Enabling a Blade," on page 5-3
- "Powering On a Blade," on page 5-4
- "Powering Off a Blade," on page 5-4

Disabling a Blade

The ability to disable a blade might be needed to perform diagnostics. When diagnostics are executed manually (from the Fabric OS command line), many commands require the blade to be in an offline state. This ensures that the activity of the diagnostic does not interfere or disturb normal fabric traffic. If the blade is not in an offline state (**bladedisable**), the **diagnostic** command will not run and display an error message.

To disable a blade:

- 1. Connect to the switch as admin.
- 2. Enter the **slotoff** command with the following syntax at the command line:

slotoff *slotnumber*

where *slotnumber* is the slot number of the blade you want to disable.

Example

```
switch:admin> slotoff 3
Slot 3 is being disabled
switch:admin>
```

Enabling a Blade

To enable a blade:

- 1. Connect to the switch as the administrator.
- 2. Enter the **sloton** command with the following syntax at the command line:

```
sloton slotnumber
```

where *slotnumber* is the slot number of the blade you want to enable.

Example

```
switch:admin> sloton 3
Slot 3 is being enabled
switch:admin>
```

Powering On a Blade

To provide power to a blade:

- 1. Connect to the switch as the administrator.
- 2. Enter the **slotpoweron** command with the following syntax at the command line:

 $slotpoweron \ slotnumber$

where *slotnumber* is the slot number of the blade you want to power on.

Example

```
switch:admin> slotpoweron 3
Powering on slot 3
switch:admin>
```

Powering Off a Blade

To power off a blade unit:

- 1. Connect to the switch as the administrator.
- 2. Enter the **slotoff** command.

The blade must be disabled so that processing stops. Refer to "Disabling a Blade," on page 5-3.

3. Enter the **slotpoweroff** command with the following syntax at the command line:

slotpoweroff slotnumber

where *slotnumber* is the slot number of the blade you want to power off.

Example

```
switch:admin> slotpoweroff 3
Slot 3 is being powered off
switch:admin>
```

Chassis Information

For a SilkWorm 12000, the chassis-wide commands display or control both logical switches. Silkworm 24000 directors, and 3900, 3850, and 3250 switches only support one logical switch, so the chassis-wide commands display and control the single logical switch.

Displaying the Status of All Slots in the Chassis

To display the status of slots in the chassis:

- 1. Connect to the switch as the administrator.
- 2. Enter the **slotshow** command at the command line. This command displays the current status of each slot in the system. The format of the display includes a header and four fields for each slot. The fields and their possible values are as follows:

Slot Displays the physical slot number.

Blade Type D

Displays the blade type:

- SW BLADE The blade is a switch.
- CP BLADE

The blade is a control processor.

Displays the hardware ID of the blade type.

• UNKNOWN Blade not present or its type is not recognized.

ID

Status

Displays the status of the blade:

• VACANT

The slot is empty.

- INSERTED, NOT POWERED ON The blade is present in the slot but is turned off.
- DIAG RUNNING POST1 The blade is present, powered on, and running the post initialization power on self tests.
- DIAG RUNNING POST2 The blade is present, powered on, and running the POST (power-on self-test).
- ENABLED The blade is on and enabled.
- DISABLED The blade is powered on but disabled.
- FAULTY

The blade is faulty because an error was detected.

Note

SilkWorm 24000 CP cards have two sections that can fail independently. A blade can still be the active CP blade and the switch can continue to function if one section fails, as the other section will continue to function. Therefore, a CP blade can be both active and showing a status of FAULTY. Silkworm 12000 CP cards do not have the dual sections, and are not functioning when the fault light illuminates. The Silkworm 3900, 3850, and 3250 switches do not contain CP cards.

UNKNOWN

The blade is inserted but its state cannot be determined.

For complete information about switch FRUs, refer to the hardware reference guide for the Brocade switch or director.

Displaying Information on Switch FRUs

To view switch FRU information for a switch:

- 1. Connect to the switch as the administrator.
- 2. Enter the **chassisshow** command at the command line. This command displays the field replaceable unit (FRU) header content for each object in the chassis. This command returns information for each FRU including:
 - Object ID and object number. Valid values include the following: CHASSIS, FAN, POWER SUPPLY, SW BLADE (switch), CP BLADE (control processor), WWN, or UNKNOWN. The object number refers to the slot number for blades and unit number for everything else.
 - FRU header version number.
 - The object's power consumption, positive for power supplies, negative for consumers.
 - The part number (up to 14 characters).
 - The serial number (up to 12 characters).
 - The date the FRU was manufactured.
 - The date the FRU header was last updated.
 - The cumulative time, in days, that the FRU has been powered on.
 - The current time, in days, since the FRU was last powered on.
 - The externally supplied ID (up to 10 characters).
 - The externally supplied part number (up to 20 characters).
 - The externally supplied serial number (up to 20 characters).
 - The externally supplied revision number (up to 4 characters).

Example

switch:admin> chassissho SW BLADE Slot: 1	w			
Header Version:	2			
Power Consume Factor:	-180			
Brocade Part Num:	65-0000555-04			
Brocade Serial Num:	F0000000000			
Manufacture:	Day: 5 Month:	9	Year:	2001
Update:	Day: 18 Month:		Year:	
Time Alive:	228 days	2	icai ·	2002
Time Awake:	0 days			
TIME Awake.	U UAYS			
SW BLADE Slot: 3				
Header Version:	2			
Power Consume Factor:	-180			
Brocade Part Num:	65-0000555-04			
Brocade Serial Num:	FQ000000000			
Manufacture:	Day: 10 Month:		Year:	
Update:	Day: 18 Month:	9	Year:	2002
Time Alive:	218 days			
Time Awake:	0 days			
CP BLADE Slot: 5				
Header Version:	2			
Power Consume Factor:	-40			
Brocade Part Num:	65-0000555-04			
Brocade Serial Num:	FQ000000000			
Manufacture:	Day: 3 Month:		Year:	
Update:	Day: 18 Month:	9	Year:	2002
Time Alive:	51 days			
Time Awake:	0 days			
CP BLADE Slot: 6				
Header Version:	2			
Power Consume Factor:	-40			
Brocade Part Num:	65-0000555-04			
Brocade Serial Num:	FQ00000000			
Manufacture:	Day: 26 Month:	1	Year:	2002
Update:	Day: 18 Month:	9	Year:	2002
Time Alive:	131 days			
Time Awake:	0 days			
SW BLADE Slot: 8				
Header Version:	2			
Power Consume Factor:	-180			
Brocade Part Num:	65-0000555-04			
Brocade Serial Num:	FQ000000000			
Manufacture:	Day: 22 Month:			
Update:	Day: 18 Month:	9	Year:	2002
Time Alive:	217 days			
Time Awake:	0 days			
<output truncated=""></output>				

Setting the Blade Beacon Mode

When beaconing mode is enabled, the port LEDs will flash amber in a running pattern from port 0 through port 15 and back again. The pattern continues until the user turns it off. This can be used to signal the user to a particular blade.

To set the blade beacon mode on:

- 1. Connect to the switch as the administrator.
- 2. Enter the **bladebeacon** command with the following syntax at the command line:

bladebeacon *slotnumber*, mode

where slotnumber is the blade where you want to enable beacon mode. 1 turns beaconing mode on, or 0 turns beaconing mode off.

Example

switch:admin> bladebeacon 3, 1 switch:admin>

This chapter provides information on procedures for the *Remote Switch* and the *Extended Fabric* features using Fabric OS commands. These features require a license key to activate.

This chapter has the following information:

- "License Activation" on page 6-1
- "Configuring a Remote Switch Fabric" on page 6-1
- "Configuring an Extended Fabric ISL Link" on page 6-3
- "Distributed Fabric Commands" on page 6-6

License Activation

Use the **licenseshow** command to verify that the *Remote Switch* and the *Extended Fabric* license keys are installed to your switch. Refer to "Managing Licensed Features" on page 1-8 for more information on activating a feature using license keys.

Configuring a Remote Switch Fabric

Brocade Remote Switch can be used for any gateway device including Fibre Channel over ATM, Fibre Channel over IP, Fibre Channel over SONET, and Fibre Channel over DWDM. Most of these gateway devices include a large number of buffers to cover data transfer over WAN. The SilkWorm switches on each side of the gateway must have identical configurations. Only active SFPs should be used when using Brocade Remote Switch.

Remote Switch is automatically activated when you enable the licence key. The only required action is to connect the fabrics through the gateway device, and make sure that the **configure** parameters are compatible with the gateway device.

You may be required to re-configure the following parameters, depending on the gateway requirements:

- R_A_TOV: Specify a Resource Allocation Timeout Value compatible with your gateway device.
- E_D_TOV: Specify a Error Detect Timeout Value compatible with your gateway device
- Data field size: Specify the maximum Fibre Channel data field reported by the fabric. Verify the maximum data field size the network-bridge can handle. Some bridges may not be able to handle a maximum data field size of 2112.
- BB credit: Specify the number of Buffer-to-Buffer credits for Nx_port devices.

• Suppress Class F Traffic: Use this parameter to disable class F traffic. Some network-bridge devices may not have a provision for handling class F frames. In this case, the transmission of class F frames must be suppressed throughout the entire Remote Switch fabric.

Modifying Configuration Parameters

To set the access and reconfigure these parameters:

- 1. Connect to the switch as the administrator.
- 2. Enter the **switchdisable** command to disable the switch.
- 3. Enter the **configure** command.
- 4. Enter "yes" at the Fabric Parameters prompt.
- 5. Press **Enter** to scroll through the **Fabric Parameters** without changing their values, until you reach the parameter you want to modify.
- 6. Specify a new parameter value that is compatible with your gateway device.
- 7. Press **Enter** to scroll through the remainder of the configuration parameters. Make sure that the configuration changes are committed to the switch.
- 8. Repeat for all switches in the fabrics to be connected through a gateway device. These parameters must be identical on each switch in the fabric, and between fabrics connected through the gateway device.

Example:

The following example shows how to modify the Data Field Size and Suppress Class F Traffic parameter settings on a switch:

```
switch:admin> switchdisable
switch:admin> configure
Configure...
Fabric parameters (yes, y, no, n): [no] yes
   Domain: (1..239) [3]
    R_A_TOV: (4000..120000) [10000]
    E_D_TOV: (1000..5000) [2000]
   Data field size: (256..2112) [2112] 1000
   Sequence Level Switching: (0..1) [0]
   Disable Device Probing: (0..1) [0]
   Suppress Class F Traffic: (0..1) [0] 1
   VC Encoded Address Mode: (0..1) [0]
   Per-frame Route Priority: (0..1) [0]
   Long Distance Fabric: (0..1) [0]
    BB credit: (1..16) [16]
  Virtual Channel parameters (yes, y, no, n): [no]
  Zoning Operation parameters (yes, y, no, n): [no]
 RSCN Transmission Mode (yes, y, no, n): [no]
 NS Operation Parameters (yes, y, no, n): [no]
  Arbitrated Loop parameters (yes, y, no, n): [no]
 System services (yes, y, no, n): [no]
  Portlog events enable (yes, y, no, n): [no]
Committing configuration...done.
switch:admin>
```

Configuring an Extended Fabric ISL Link

Use the **portcfglongdistance** command to configure extended fabric ISL links (see "Configuring a Long Distance Connection," next, for details), but first note the following:

- Do not configure an extended fabric ISL link with v2.x switches in any fabric with 3.x or 4.x switches (however, v2.x switches can be in a fabric with extended fabric ISL links configured between any combination of v3.x and v4.x switches.)
- Do not set the long distance fabric **fabric.ops.mode.longDistance** parameter in fabrics where extended fabrics ports are configured only on v3.x or v4.x switches.
- The long distance ISL ports must have the same configuration or the fabric will segment.

Configuring a Long Distance Connection

Note

ISL Trunking is not supported on a long distance ISL

This procedure is used to configure the ports in a long distance ISL connection. Both ports must be configured to the same distance level. Only active SFPs should be used when using Brocade Extended Fabric.

To configure the distance level for a Extended Fabric ISL port:

- 1. Connect to the switch as the administrator.
- 2. Issue the following command:

```
portcfglongdistance [slot/]port [distance_level][vc_translation_link_init]
where:
```

slot Specify the slot number in a SilkWorm 12000/24000 switch. This option is not applicable to the Silkworm 3900/3850/3250. The slot number must be followed by a slash (/) and the port number.

- *port* Specify the port number where you want to initiate the long distance ISL connection.
- distance_level This indicates the long distance mode to be set on the port.
- vc_translation_link_init

Enable the long-distance link initialization sequence. By default this option is set to 0 (disabled).

The example shows a configuration for the LD distance level.

Example:

switch:admin> portcfglongdistance 1/1 LD 1
switch:admin>

Select from the following port parameters and levels:

Normal E_port	This is the standard default value of all ports on the switch. Normal E_port – supports up to 10km at 1G and up to 5km at 2G .
	This operation is sometimes referred to as L0 in documents. L0 and normal E_ports are the same.
Fx	F_port or FL_port.
Level E (LE)	An Extended Fabric license is not required.
	Supports up to 10km at both 1G and 2G . This mode was created to support 2G up to 10km and uses EF principles. This mode does not support trunking with other ports
Level 1(L1)	An Extended Fabric license is required.
	Extended Fabric port which can support up to 50km at both 1G and 2G. This mode does not support trunking with other ports.

Level 2(L2)	An Extended Fabric license is required.		
	Extended Fabric port which can support up to 100 km at 1G and up to 60km at 2G . This mode does not support trunking with other ports.		
Level 0.5 (L0.5)	Supports up to 25km at both 1G and 2G . This mode does not support trunking with other ports.		
(Lx)	Any of L1, L2, LE, L0.5, and LD.		
Level D (LD) (Dynamic long distance configuration)	LD mode dynamically assigns buffers based on the link round trip timing calculation. Ports will be disabled once the buffer pool has been depleted. For example, if two ports are configured at LD and each is connected at 100km, all buffers will be utilized and the remaining two ports will be disabled.		
	This mode supports up to 100km at 1G and 50km at 2G.		

3. Repeat step 2 for the remote long distance ISL port. Both the local and remote long distance ISL ports must be configured to the same distance level for the connection to work. When the connection is initiated, the fabric will reconfigure.

VC Translation Mode

Revisions of Fabric OS v3.0.2 and above contain an additional optional parameter, VC Translation Link Initialization, to the portCfgLongDistance CLI command. When set to 1, this parameter indicates that enhanced link reset protocol should be used on the port. The default value for this parameter is 0 and is compatible with earlier Fabric OS v3.x implementations. For optimal performance, specify 1 when E_Port links are between switches with Fabric OS v3.0.2 and greater, or Fabric OS v4.0.2 and greater. Specify 0, or nothing, when connecting a switch with Fabric OS v3.0.2 or above switch to previous releases of Fabric OS.

Distributed Fabric Commands

 Table 6-1 lists commands used to configure and manage the *Extended Fabric* or *Remote Switch* features.

 Table 6-1
 Distributed Fabric Commands

Command	Description
configure	This command is used for the <i>Remote Switch</i> feature. Use it to modify parameters necessary to ensure compatibility with the chosen gateway device.
	Note that v4.2.0 does not support the extended link with SilkWorm series 2000 switches. The Long Distance fabric parameter is used to enable SilkWorm series 2000 switches to configure extended links with other switches.
portcfglongdistance	Configure a port to support a long distance ISL link. This command must be executed on both the ports used in a Long Distance ISL link.

For more information on these commands, refer to the Fabric OS Reference.

This chapter provides information on working with the Management Server (MS) platform database.

- "The Management Server" on page 7-1
- "Configuring Access to the Management Server" on page 7-2
- "Displaying the Management Server Database" on page 7-6
- "Clearing the Management Server Database" on page 7-6
- "Activating the Platform Management Service" on page 7-6
- "Deactivating the Platform Management Service" on page 7-7
- "Controlling the Topology Discovery" on page 7-7

The Management Server

The Fabric Operating System (Fabric OS) includes a Distributed Management Server. The Management Server allows a Storage Area Network (SAN) management application to retrieve information and administer the fabric and interconnected elements, such as switches, servers, and storage devices. The MS is located at the fibre channel well-known address, FFFFFAh.

The implementation of the Management Server (MS) provides four management services:

- Fabric Configuration Service Provides basic configuration management for topology information (referred to as Topology Discovery).
- Unzoned Name Server access Provides a management view of the Name Server information for all devices in a fabric, regardless of the active zone set.
- Fabric Zone Service
- FDMI

The services provided by the MS assist in the auto-discovery of switch-based fabrics and their associated topology. A client of the MS can determine basic information regarding the switches that comprise the fabric and use this information to construct topology relationships. In addition, the basic configuration services provided by the management server allow certain attributes associated with switches to be obtained and in some cases, modified. For example, logical names identifying switches may be registered with the Management Server.

Note

The **msconfigure** command is disabled if the switch is in secure mode. Refer to the *Secure Fabric OS User's Guide* for more information.

- It is accessed by an external Fibre Channel node at the well-known address xFFFFFA.
- It is replicated on every SilkWorm switch within a fabric (for Fabric OS v2.3 and later).
- It provides an unzoned view of the overall fabric configuration.

Because the MS is accessed via its well-known address, an application can access the entire fabric management information with minimal knowledge of the existing configuration. The fabric topology view exposes the internal configuration of a fabric for management purposes; it contains interconnect information about switches and devices connected to the fabric. Under normal circumstances, a device (typically an FCP initiator) queries the Name Server for storage devices within its member zones. Because this limited view is not always sufficient, the MS provides the application with a list of the entire Name Server database.

Note

Management Server Platform service is available only with Fabric OS V2.3 and later. If the Management Server Platform service is started on a fabric with any switches of 2.2.x or earlier, the MS Platform Services will not be enabled (the command will be rejected).

Configuring Access to the Management Server

An Access Control List (ACL) of WWN addresses determines which systems have access to the Management Server database. If the list is empty (default), the Management Server is accessible to all systems connected in-band to the Fabric. For a more secured access, an administrator may specify WWNs in the ACL. These WWNs are usually associated with the management applications. If any WWNs are entered into the ACL, then access to the Management Server is restricted to only those WWNs listed in the ACL.

The ACL is "switch-based". Therefore, only hosts that are connected directly to the switch are affected by the ACL. A host that is somewhere else in the fabric and is connected to a switch with an empty ACL is allowed to access the Management Server.

Displaying the Access Control List

To display the Management Server ACL:

- 1. Connect to the switch as the administrator.
- 2. Enter the msconfigure command at the command line. The command becomes interactive.
- 3. At the select prompt enter 1 to display the access list.

A list of WWNs that have access to the Management Server is displayed.

7

Example

```
switch:admin> msconfigure
0 Done
1 Display the access list
2 Add member based on its Port/Node WWN
3 Delete member based on its Port/Node WWN
select : (0..3) [1] 0
done ...
switch:admin>
```

Adding a WWN to the Access Control List

To add a WWN to the ACL:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the msconfigure command. The command becomes interactive.
- 3. At the select prompt enter 2 to add a member based on its Port/Node WWN.
- 4. At the prompt enter the WWN of the member you would like to add to the ACL. Press the return key, and the main menu is displayed.
- 5. At the prompt enter 1 to verify the WWN you entered was added to the ACL.
- 6. Once you have verified that the WWN was added correctly, enter 0 at the prompt to end the session.
- 7. At the "Update the FLASH?" prompt enter Y.
- 8. Press Enter to update the flash and end the session.

Example

```
switch:admin> msconfigure
Ω
       Done
1
       Display the access list
2
        Add member based on its Port/Node WWN
       Delete member based on its Port/Node WWN
3
select : (0..3) [1] 2
Port/Node WWN (in hex): [20:00:00:20:37:65:ce:aa] xx:xx:xx:xx:xx:xx:xx:xx
*The default WWN value is 20:00:00:20:37:65:ce:aa. Enter the WWN value in place of the
xx:xx:xx:xx:xx:xx:xx
*WWN is successfully added to the MS ACL.
0
        Done
1
        Display the access list
2
        Add member based on its Port/Node WWN
3
        Delete member based on its Port/Node WWN
select : (0..3) [2] 1
MS Access List consists of (14): {
 20:00:00:20:37:65:ce:aa
 20:00:00:20:37:65:ce:bb
 20:00:00:20:37:65:ce:ff
 20:00:00:20:37:65:ce:11
 20:00:00:20:37:65:ce:22
 20:00:00:20:37:65:ce:33
 20:00:00:20:37:65:ce:44
 10:00:00:60:69:04:11:24
 10:00:00:60:69:04:11:23
 21:00:00:e0:8b:04:70:3b
 10:00:00:60:69:04:11:33
20:00:00:20:37:65:ce:55
 20:00:00:20:37:65:ce:66
 00:00:00:00:00:00:00:00
}
0
        Done
        Display the access list
1
2
        Add member based on its Port/Node WWN
З
        Delete member based on its Port/Node WWN
select : (0..3) [1] 0
done ...
Update the FLASH? (yes, y, no, n): [yes] y
*Successfully saved the MS ACL to the flash.
switch:admin>
```

Deleting a WWN from the Access Control List

To delete a WWN from the ACL:

- 1. Connect to the switch as the administrator.
- 2. Enter the **msconfigure** command at the command line. The command becomes interactive.
- 3. At the select prompt enter 3 to delete a member based on its Port/Node WWN.

- 4. At the prompt enter the WWN of the member you would like to delete from the ACL. Press the return key, and the main menu is displayed.
- 5. At the prompt enter 1 to verify the WWN you entered was deleted from the ACL.
- 6. Once you have verified that the WWN was deleted correctly, enter **0** at the prompt to end the session.
- 7. At the "Update the FLASH?" prompt enter Y.
- 8. Press Enter to update the flash and end the session.

Example

```
switch:admin> msconfigure
0
        Done
1
        Display the access list
2
        Add member based on its Port/Node WWN
        Delete member based on its Port/Node WWN
3
select : (0..3) [1] 3
Port/Node WWN (in hex): [20:00:00:20:37:65:ce:aa] xx:xx:xx:xx:xx:xx:xx:xx
*The default WWN value is 20:00:00:20:37:65:ce:aa. Enter the WWN value in place of the
xx:xx:xx:xx:xx:xx:xx
*WWN is successfully deleted from the MS ACL.
0
        Done
1
        Display the access list
2
        Add member based on its Port/Node WWN
3
        Delete member based on its Port/Node WWN
select : (0..3) [2] 1
MS Access List consists of (13): {
 20:00:00:20:37:65:ce:aa
 20:00:00:20:37:65:ce:bb
 20:00:00:20:37:65:ce:ff
 20:00:00:20:37:65:ce:11
 20:00:00:20:37:65:ce:22
 20:00:00:20:37:65:ce:33
10:00:00:60:69:04:11:24
10:00:00:60:69:04:11:23
21:00:00:e0:8b:04:70:3b
 10:00:00:60:69:04:11:33
20:00:00:20:37:65:ce:55
20:00:00:20:37:65:ce:66
}
0
        Done
1
        Display the access list
        Add member based on its Port/Node WWN
2
        Delete member based on its Port/Node WWN
3
select : (0..3) [1] 0
done ...
Update the FLASH? (yes, y, no, n): [yes] y
*Successfully saved the MS ACL to the flash.
switch:admin>
```

7

Displaying the Management Server Database

To view the contents of the Management Server Platform Database:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **msplatshow** command. The contents of the Management Server Database are displayed.

Example

```
switch:admin> msplatshow
Platform Name: [9] "first obj"
Platform Type: 5 : GATEWAY
Number of Associated M.A.: 1
[35] "http://java.sun.com/products/plugin"
Number of Associated Node Names: 1
Associated Node Names:
10:00:00:60:69:20:15:71
Platform Name: [10] "second obj"
Platform Type: 7 : HOST_BUS_ADAPTER
Number of Associated M.A.: 1
Associated Management Addresses:
[30] "http://java.sun.com/products/1"
Number of Associated Node Names: 1
Associated Node Names:
10:00:00:60:69:20:15:75
```

Clearing the Management Server Database

To clear the MS Platform database:

- 1. Connect to the switch as the administrator.
- 2. Enter the msplcleardb command at the command line.
- 3. Enter Y to confirm the deletion. The Platform database is cleared.

Activating the Platform Management Service

To activate the Platform Management Service for a fabric:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the msplmgmtactivate command.

Example

```
switch:admin> msplmgmtactivate
Activating Platform Management Service in the Fabric is in progress.....
*Completed activating Platform Management Service in the fabric!
switch:admin>
```

Deactivating the Platform Management Service

To deactivate the Platform Management Service for a fabric:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the msplmgmtdeactivate command.
- 3. Enter Y to confirm the deactivation.

Example

```
switch:admin> msplmgmtdeactivate
MS Platform Management Service is currently enabled.
This will erase Platform configuration information
as well as Platform databases in the entire fabric.
Would you like to continue disabling? (yes, y, no, n): [no] y
Deactivating Platform Management Service is in progress.....
*Completed deactivating Platform Management Service in the fabric!
switch:admin>
```

Controlling the Topology Discovery

The Topology Discovery is an individual feature within the Management Server, and can be displayed, enabled, and disabled separately.

Display the Status of MS Topology Discovery Service

To display the current status of the Management Server Topology Discovery feature:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **mstdreadconfig** command.

3. View the list of displayed MS features.

Example

```
switch:admin> mstdreadconfig
*MS Topology Discovery is Enabled.
switch:admin>
```

Enable the MS Topology Discovery Feature

The Management Server Topology Discovery feature is disabled by default. To enable the MS Topology Discovery feature:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the mstdenable command.

A request is sent to enable the MS Topology Discovery Management Feature and the feature is enabled.

Example

```
switch:admin> mstdenable
Request to enable MS Topology Discovery Service in progress....
*MS Topology Discovery enabled locally.
switch:admin> mstdenable ALL
Request to enable MS Topology Discovery Service in progress....
*MS Topology Discovery enabled locally.
*MS Topology Discovery Enable Operation Complete!!
```


Note

Use the ALL argument in the **mstdenable** command to enable the MS Topology Discovery Management Feature on the entire fabric.

Disable the MS Topology Discovery Feature

Disabling MS Topology Discover may erase all NID entries.

To disable the MS Topology Discover management feature:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **mstddisable** command.

A warning displays that all NID entries may be cleared.

Note

Use the ALL argument in the **mstdenable** command to disable the MS Topology Discovery Management Feature on the entire fabric.

3. Enter Y to disable MS Topology discovery.

Example

```
switch:admin> mstddisable
This may erase all NID entries. Are you sure? (yes, y, no, n): [no] y
Request to disable MS Topology Discovery Service in progress....
*MS Topology Discovery disabled locally.
switch:admin> mstddisable ALL
This may erase all NID entries. Are you sure? (yes, y, no, n): [no] y
Request to disable MS Topology Discovery Service in progress....
*MS Topology Discovery disabled locally.
*MS Topology Discovery Disable locally.
```

7

Chapter

This chapter provides information on procedures for the Performance Monitor feature using Fabric OS commands. This feature requires a license key to activate.

This chapter has the following information:

- "License Activation" on page 8-1
- "AL_PA Performance Monitoring" on page 8-2
- "End-to-End Performance Monitoring" on page 8-3
- "Filter-based Performance Monitoring" on page 8-9
- "Saving and Restoring Monitor Configurations" on page 8-14
- "Performance Monitor Commands" on page 8-1

License Activation

Use the **licenseshow** command to verify that the *Performance Monitor* license key is installed to your switch. Refer to "Managing Licensed Features" on page 1-8 for more information on activating a feature using license keys.

Performance Monitor Commands

Table 8-1 lists commands used to configure and manage the Performance Monitor feature. For detailed information on these commands, refer to the *Fabric OS Reference*.

Command	Description
perfaddeemonitor	Add an end-to-end monitor to a port.
perfaddipmonitor	Add an IP monitor to a port.
perfaddreadmonitor	Add a SCSI Read monitor to a port.
perfaddrwmonitor	Add a SCSI Read and Write monitor to a port.

 Table 8-1
 Performance Monitor Commands

Command	Description	
perfaddscsimonitor	Add a SCSI traffic frame monitor to a port.	
perfaddusermonitor	Add a user-defined monitor to a port.	
perfaddwritemonitor	Add a SCSI Write monitor to a port.	
perfcfgclear	Clear the performance monitoring settings from flash memory.	
perfcfgrestore	Restore performance monitoring settings from flash memory.	
perfcfgsave	Save the current performance monitoring settings to flash memory.	
perfcleareemonitor	Clear statistics counters of an end- to-end monitor on a port.	
perfclearfiltermonitor	Clear statistics counters of a filter-based monitor.	
perfclralpacrc	Clear an ALPA device CRC count by the port and ALPA.	
perfdeleemonitor	Delete an end-to-end monitor on port.	
perfdelfiltermonitor	Delete a filter-based monitor.	
perfsetporteemask	Set overall mask for end-to-end (EE) monitors.	
perfshowalpacrc	Display the ALPA CRC count by port or by ALPA.	
perfshoweemonitor	Display user-defined end-to-end monitors on a port.	
perfshowfiltermonitor	Display filter-based monitors for a port.	
perfshowporteemask	Display the current end-to-end mask of a port.	

 Table 8-1
 Performance Monitor Commands (Continued)

AL_PA Performance Monitoring

AL_PA performance monitoring tracks and displays the number of CRC errors that have occurred on frames sent from each AL_PA on a specific port. AL_PA-based performance monitoring does not require explicit configuration. The switch hardware and firmware automatically monitors CRC errors for all valid AL_PAs.

Note

A system with blade slot/port syntax is used and on a system without blades, port number is used instead. All examples in this document use slot/port syntax.

Displaying the CRC Error Count

To display the CRC error count for all AL_PA devices or a single AL_PA on a specific port, use the **perfshowalpacrc** command. The port must be an active L_Port. The command used in the example displays the CRC error count for all AL_PA devices on port 3 (on slot 1).

8

Example

```
switch:admin> perfshowalpacrc 1/3
AL_PA CRC count
-----
0x01 2
0x02 0
0x02 1
```

The command used in the example, displays the CRC error count for AL_PA 0x01 on slot 1 port 3.

Example

```
switch:admin> perfshowalpacrc 1/3, 0x01
The CRC count at ALPA 0x1 on port 3 is 0x000000002.
```

Clearing the CRC Error Count

To clear the CRC error count for AL_PA devices on a specific port, use the **perfclralpacrc** command. Using this command you can either clear the error counts for a specific AL_PA or clear the error counts on all AL_PA devices on a port. The command used in the first example below, clears the CRC error count for all AL_PA devices on slot 1 port 3. The command used in the second example below, clears the CRC error the CRC error count for AL_PA double on slot 1 port 3.

In v3.1 and v4.2.0 issuing **portstatsclear** command on a port will also result in all AL_PA based CRC error counters being cleared for all the ports in the same quad.

Example

Note

```
switch:admin> perfclralpacrc 1/3
No ALPA value is specified. This will clear all ALPA CRC
counts on port 3. Do you want to continue? (yes, y, no, n): [no]
Please wait ...
All alpa CRC counts are cleared on port 3.
```

Example

```
switch:admin> perfclralpacrc 1/3, 0x01
CRC error count at ALPA 0x1 on port 3 is cleared.
```

End-to-End Performance Monitoring

End-to-End performance monitoring counts the number of words and CRC errors in Fibre Channel frames for a specified Source ID (SID) and Destination ID (DID) pair. An end-to-end performance monitor counts the number of

- Words in frames received at the port (RX_COUNT).
- Words in frames transmitted from the port (TX_COUNT).
- Frames received at or transmitted from the port with CRC errors (CRC_COUNT).

To enable end-to-end performance monitoring, you must configure an end-to-end monitor on a port, specifying the SID-DID pair. The monitor counts only those frames with matching SID and DID. Each SID or DID has three fields, listed in the following order:

- Domain ID (DD)
- Area ID (AA)
- AL_PA (PP)

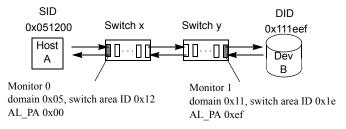
The SID 0x118a0f has Domain ID 0x11, Area ID 0x8a, and AL_PA 0x0f. The prefix "0x" denotes a hexadecimal number.

Adding End-to-End Monitors

Use this command to add an End-to-End monitor to a port. The monitor counts the number of words received, number of words transmitted, and number of CRC errors detected in frames qualified using either of following two conditions:

- 1. For frames received at the port (with End-to-End monitor installed) the frame SID is the same as "SourceID" and frame DID is the same as "DestID". Both RX_COUNT and CRC_COUNT will be updated accordingly.
- 2. For frames transmitted from the port (with End-to-End monitor installed) the frame DID is the same as "SourceID" and frame SID is the same as "DestID", TX_COUNT, and CRC_COUNT will be updated accordingly.

Depending on the application, any port along the routing path can be selected for such monitoring.


Note

How the area ID for a port relates to the port number depends upon the PID format used by the fabric. See Chapter 13, "Selecting a Switch PID Format" for more information.

Figure 8-1 shows two devices:

- Host A, which is connected to domain 5 (0x05), switch area ID 18 (0x12), AL_PA 0x00 on Switch X
- Dev B, which is connected to domain 17 (0x11), switch area ID 30 (0x1e), AL_PA 0xef on Switch Y.

Figure 8-1 Setting End-to-End Monitors on a Port

To monitor the traffic from Host A to Dev B, add a monitor to slot 1, port 2 on Switch x specifying 0x051200 as the SID and 0x111eef as the DID. To monitor the traffic from Dev B to Host A, add a monitor to slot 2, port 14 on Switch y, specifying 0x111eef as the SID and 0x051200 as the DID. Use the commands shown in the following examples.

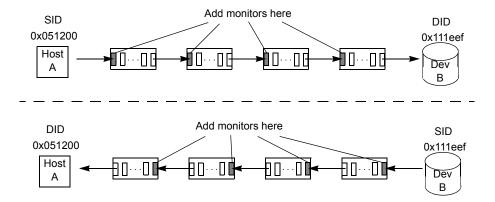
Example

```
switch:admin> perfaddeemonitor 1/12, "0x051200" "0x111eef"
End-to-End monitor number 0 added.
```

Example

```
switch:admin> perfaddeemonitor 2/14, "0x111eef" "0x051200"
End-to-End monitor number 1 added.
```

Monitor 0 counts the frames that have an SID of 0x051200 and a DID of 0x111eef. For monitor 0, RX_COUNT is the number of words from Host A to Dev B, TX_COUNT is the number of words from Dev B to Host A, and CRC_COUNT is the number of frames in both directions with CRC errors.


Monitor 1 counts the frames that have an SID of 0x111eef and a DID of 0x051200. For monitor 1, RX_COUNT is the number of words from Dev B to Host A, TX_COUNT is the number of words from Host A to Dev B, and CRC_COUNT is the number of frames in both directions with CRC errors.

Note

End-to-end performance monitoring monitors traffic on the receiving port respective to the SID only. In Figure 8-1, if you add a monitor to slot 2, port 2 on Switch x, specifying Dev B as the SID and Host A as the DID, no counters (except CRC) will be incremented.

Figure 8-2 shows several switches and the proper ports on which to add performance monitors for a specified SID-DID pair.

Figure 8-2 Proper Placement of End-to-End Performance Monitors

Setting a Mask for End-to-End Monitors

End-to-End monitors count the number of words in Fibre Channel frames that match a specific SID/ DID pair. If you want to match only part of the SID or DID, you can set a mask on the port to compare only certain parts of the SID or DID. With no mask set, the frame must match the entire SID and DID to trigger the monitor. By setting a mask, you can choose to have the frame match only one or two of the three fields (Domain ID, Area ID, AL_PA) to trigger the monitor.

Note

Only one mask per port can be set. When setting a mask, all existing end-to-end monitors will be deleted.

The example specifies the mask in the form.

Example

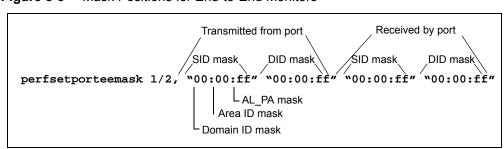
"dd:aa:pp"

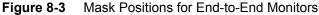
Where:

- *dd* is the Domain ID mask
- *aa* is the Area ID mask
- *pp* is the AL_PA mask.

The values for *dd*, *aa*, and *pp* are either **ff** (the field must match) or **00** (the field is ignored).

To set a mask for end-to-end monitors use the **perfsetporteemask** command. The command sets the mask for all end-to-end monitors of a port. If any End-to-End monitors are programmed on a port when the **perfsetporteemask** command is issued, you will see the message displayed as in the example.


Example


```
< n > EE monitors are currently programmed on this port. Changing EE mask
for this port will cause ALL EE monitors on this port to be deleted.
Do you want to continue? (yes, y, no, n): [no]
```

EE mask on port <port-number> is set and EE monitors were deleted

The **perfsetporteemask** command sets a mask for the Domain ID, Area ID, and AL_PA of the SIDs and DIDs for frames transmitted from and received by the port. Figure 8-3 shows the mask positions in the command.

In Figure 8-3, a mask ("ff") is set on slot 1, port 2 to compare the AL_PA fields on the SID and DID in all frames (transmitted and received) on port 2. The frame SID and DID must match only the AL_PA portion of the specified SID-DID pair. Each port can have only one EE mask. The mask is applied to all end-to-end monitors on the port. Individual masks for each monitor on the port cannot be specified. The default EE mask value upon power-on is "ff:ff:ff" for everything—SID and DID on all transmitted and received frames.

perfaddeemonitor 1/2, "0x051200" "0x111eef"

Displaying the End-to-End Mask of a Port

The **perfshowporteemask** command is used to display the current end-to-end mask of a port. The end-to-end mask has 12 fields, and each field has a value of **on** or **off**. The examples sets an end-to-end mask on slot 1, port 11 and displays the mask.

Example

```
switch:admin> perfsetporteemask 1/11,
"00:00:ff" "00:00:ff" "00:00:ff"
The EE mask on port 11 is set and EE counters are reset.
```

Example

```
switch:admin> perfshowporteemask 1/11
The EE mask on port 11 is set by application TELNET
TxSID Domain: off
TxSID Area:
              off
TxSID ALPA:
              on
TxDID Domain: off
TxDID Area: off
TxDID ALPA:
              on
RxSID Domain: off
RxSID Area:
              off
RxSID ALPA:
              on
RxDID Domain: off
RxDID Area:
              off
RxDID ALPA:
              on
```

Displaying End-to-End Monitors

The **perfshoweemonitor** command is used to display all the end-to-end monitors defined on a port. Cumulative counters or a rolling table of counters can be displayed at specified intervals. This command displays the following information on all end-to-end monitors:

- Monitor number (KEY)
- SID

- DID
- CRC error count (CRC_COUNT)
- Number of Fibre Channel words transmitted (TX_COUNT)
- Number of Fibre Channel words received (RX_COUNT)
- Creator application (OWNER_APP)
- IP address of the creator, if known (OWNER_IP_ADDR)

If an interval number is specified in the **perfshoweemonitor** command, the command displays a rolling table of CRC error, TX, and RX counters on a per-interval basis for all the valid monitors on the port. The counter values are the number of bytes, in decimal format. If you omit the display interval number, the command displays the cumulative transmit counter (TX_COUNT), receive counter (RX_COUNT), and CRC error counter. These cumulative counters are 64-bit values in hexadecimal format.

The example displays all of the end-to-end monitors on slot 1, port 3. In this example, three monitors are on slot 1, port 3, numbered 0, 1, and 2.

Note

In 4.x, registers are scanned every 5 seconds and display intervals should be specified in multiples of 5 seconds. In 3.x, there is no requirement for the interval restriction.

Example

```
switch:admin> perfshoweemonitor 1/3, 5
perfShowEEMonitor 3, 5: Tx/Rx are # of bytes and crc is # of crc errors
    0
               1
                          2
crc Tx Rx crc Tx Rx crc Tx Rx
_____
           -----
0 0 0 0 0 0 0
                              0
0 53m 4.9m 0 53m 4.9m 0 53m 4.9m
0 53m 4.4m 0 53m 4.4m 0 53m 4.4m
0 53m 4.8m 0 53m 4.8m 0 53m 4.8m
0 53m 4.6m 0 53m 4.6m
                      0 53m 4.6m
  53m5.0m053m5.0m52m4.6m052m4.6m
0
                       0 53m 5.0m
                       0
                          52m 4.6m
0
```


Note

In the above example, "m" stands for megabytes. You may also see "g" for gigabytes, or "k" for kilobytes.

The example displays the cumulative counters on all end-to-end monitors defined on slot 1, port 3. The KEY column contains the monitor number.

Example

switch:admin> perfshoweemonitor 1/3 There are 3 end-to-end monitor(s) defined on port 3.					
KEY SID DID OWNER_A	PP OWNER_IP_ADDR TX_COUNT	RX_COUNT	CRC_COUNT		
0 0xb1300 0xb23ef TELNET	NA 0x0000004d0ba9	915 0x000000067229e65	0x000000000000000000000		
1 0xb1200 0xb22ef TELNET	NA 0x0000004d0baa				
2 0x58eOf 0x1182ef WEB_TOO	LS 192.168.169.40 0x0000004d0	bade54 0x000000067229e	87 0x00000000000000000		

Deleting End-to-End Monitors

The **perfdeleemonitor** command is used to delete an end-to-end monitor on a port. Indicate which monitor to delete by specifying the monitor number that was returned by a previous **perfaddeemonitor** command. The example deletes the end-to-end monitor number 0 on slot 1, port 2.

Example

```
switch:admin> perfdeleemonitor 1/2, 0
End-to-End monitor number 0 deleted
```

Clearing End-to-End Monitor Counters

To clear statistics counters for all or a specified end-to-end monitor on a port, use the **perfcleareemonitor** command. After the command has been executed, the telnet shell confirms that the monitor counters have been cleared. Before issuing this command, verify that all of the valid end-to-end monitor numbers on a specific port using the **perfshoweemonitor** command to make sure the correct monitor counters will be cleared. The example clears statistic counters for an end-to-end monitor on slot 1, port 2, monitor 5.

Note

In v4.2.0 and v3.1 issuing the command **portstatsclear** on a port will also result in all End-to-End monitors being cleared for all the ports in the same quad.

Example

```
switch:admin> perfcleareemonitor 1/2, 5
End-to-End monitor number 5 counters are cleared
```

Filter-based Performance Monitoring

Filter-based monitoring counts the number of times a frame with a particular pattern is received by a port. Filter-based monitoring is achieved by configuring a filter for a particular purpose. The filter can be a standard filter (for example, a read command filter that counts the number of read commands that have been received by the port) or a user-defined filter that you customize for your particular use. The maximum number of filters is eight per port, in any combination of standard filters and user-defined filters. The actual number of filters that can be configured on a port also depends on the complexity of the filters.

Adding Standard Filter-based Monitors

Table 8-2 lists the telnet commands used when you add standard filter-based monitors to a port.

 Table 8-2
 Telnet Commands to Add Filter-based Monitors

Telnet command	Description
perfaddreadmonitor	Count the number of SCSI Read commands.
perfaddwritemonitor	Count the number of SCSI Write commands.
perfaddrwmonitor	Count the number of SCSI Read and Write commands.
perfaddscsimonitor	Count the number of SCSI traffic frames.
perfaddipmonitor	Count the number of IP traffic frames.

The example adds filter-based monitors to port 2 using the **perfaddreadmonitor** command and displays the results.

Example

```
switch:admin> perfaddreadmonitor 1/2
SCSI Read filter monitor #0 added
```

The example adds filter-based monitors to slot 1, port 2 using the **perfaddwritemonitor** command and displays the results.

Example

```
switch:admin> perfaddwritemonitor 1/2
SCSI Write filter monitor #1 added
```

The example adds filter-based monitors to slot 1, port 2 using the **perfaddrwmonitor** command and displays the results.

Example

```
switch:admin> perfaddrwmonitor 1/2
SCSI Read/Write filter monitor #2 added
```

The example adds filter-based monitors to slot 1, port 2 using the **perfaddscsimonitor** command and displays the results.

Example

```
switch:admin> perfaddscsimonitor 1/2
SCSI traffic frame monitor #3 added
```

The example adds filter-based monitors to slot 1, port 2 using the **perfaddipmonitor** command and displays the results.

Example

```
switch:admin> perfaddipmonitor 1/2
IP traffic frame monitor #4 added
```

The example displays filter-based monitors configured on slot 1, port 2 using the **perfshowfiltermonitor** command.

Example

switch:admin> perfshowfiltermonitor 1/2 There are 5 filter-based monitors defined on port 2.				
KE	Y ALIAS	OWNER_APP	OWNER_IP_ADDR	FRAME_COUNT
0 1	SCSI Read SCSI Write		N/A N/A	0x000000000000000000000000000000000000
2 3	SCSI R/W SCSI Frame	TELNET TELNET	N/A N/A	0x0000000000000000 0x00000000000000000
4	IP Frame	TELNET	N/A	0x000000000000000000

Adding User-defined Filter-based Monitors

In addition to the standard filters (read, write, read/write, and frame count), you can create custom filters to qualify frames to gather statistics to fit your needs.

To define a custom filter, use the **perfaddusermonitor** telnet command. With this command, you must specify a series of *offsets*, *masks*, and *values*. For all incoming frames, the switch

- Locates the byte found in the frame at the specified offset.
- Applies the *mask* to the byte found in the frame.
- Compares the value with the given values in the perfaddusermonitor command.
- Increments the filter counter if a match is found.

Up to six different offsets for each port and up to four values to compare against each offset can be specified. If more than one offset is required to properly define a filter, the bytes found at each offset must match one of the given values for the filter to increment its counter. If one or more of the given offsets does not match any of the given values, the counter does not increment.

The value of the offset must be between 0 and 63, in decimal format. Byte 0 indicates the first byte of the Start of Frame (SOF), byte 4 is the first byte of the frame header, and byte 28 is the first byte of the payload. Thus only the SOF, frame header, and first 36 bytes of payload may be selected as part of a filter definition. Offset 0 is a special case, which can be used to monitor the first 4 bytes of the frame (SOF). When the *offset* is 0, the *values* are from 0–7, as indicated in Table 8-3.

 Table 8-3
 Offset and SOF Values

Offset	SOF Value
0	SOFf
1	SOFc1
2	SOFi1
3	SOFn1
4	SOFi2
5	SOFn2
6	SOFi3
7	SOFn3

The hardware can manage only 16 unique offsets and values per port, 13 of which are already specified. This leaves three offsets that can be used for new user defined offsets. If the switch does not have enough resources to create a given filter, then other filters might have to be deleted to free up resources.

The example adds a filter-based monitor to count all FCP and IP frames received from domain 0x02 for port 2 on slot 4. The FCP and IP protocols are selected by monitoring offset 12, mask 0xff and matching values of 0x05 or 0x08. Domain 2 is selected by monitoring offset 9, mask 0xff, and matching a value of 0x02.

Example

```
switch:admin> perfaddusermonitor 4/2,
"12, 0xff, 0x05, 0x08; 9, 0xff, 0x02" "FCP/IP"
User monitor #5 added
```

The monitor counter is incremented for all outgoing frames from port 2 where byte 9 is 0x02 and byte 12 is 0x05 or 0x08. The example adds a special case filter-based monitor for SOFi3 on slot 1, port 2.

Example.

```
switch:admin> perfaddusermonitor 1/2, "0, 0xff, 6"
User Monitor #6 added
```

Displaying Filter-based Monitors

Use the **perfshowfiltermonitor** command to display all the filter-based monitors on a specified port. The cumulative count of the traffic detected by the monitors can be displayed, or you can display a snapshot of the traffic at specified intervals.

Note

In 4.x, registers are scanned every 5 seconds and display intervals should be specified in multiples of 5 seconds. In 3.x, there is no requirement for the interval restriction.

The example displays filter monitor traffic on slot 1, port 2 at an interval of once every 5 seconds. In the command output, "#CMDs" refers to the read, write, and read-write counters, and "#Frames" refers to SCSI frame, IP frame, and user-defined counters.

Example.

<pre>switch:admin> perfshowfiltermonitor 1/2, 5</pre>						
0	1	2	3	4	5	б
#CMDs	#CMDs	#CMDs	#Frames	#Frames	#Frames	#CMDs
0	0	0	0	0	0	0
26k	187	681	682	682	494	187
26k	177	711	710	710	534	176
26k	184	734	734	734	550	184
26k	182	649	649	649	467	182
26k	188	754	755	755	567	184

The example displays the cumulative frame count of all filter-based monitors defined on slot 1, port 2. The KEY column lists the monitor numbers.

Example

Deleting Filter-based Monitors

To delete a filter-based monitor:

- 1. List the valid monitor numbers using the **perfshowfiltermonitor** command.
- 2. Use the **perfdelfiltermonitor** command to delete a specific monitor. If you do not specify which monitor number to delete, you are asked if you want to delete all entries.

The example displays the monitors on slot 1, port 4 using the **perfshowfiltermonitor** command (the monitor numbers are listed in the KEY column).

Example

switch:admin> perfshowfiltermonitor 1/4					
There are 4 f	ilter-based	monitors defined on p	port 4.		
KEY ALIAS	OWNER_APP	OWNER_IP_ADDR	FRAME_COUNT		
0 SCSI Read	TELNET	N/A	$0 \ge 0 \ge$		
1 SCSI Write	TELNET	N/A	0x000000000000464a		
2 SCSI R/W	TELNET	N/A	0x00000000000fd8c		
3 SCSI Frame	WEB_TOOLS	192.168.169.40	0x0000000002c2229		

The example deletes monitor number 1 on slot 1, port 4 using the **perfdelfiltermonitor** command.

Example

```
switch:admin> perfdelfiltermonitor 1/4, 1
The specified filter-based monitor is deleted.
```

Clearing Filter-based Monitor Counters

Before you clean statistics counters, verify all of the valid monitor numbers with user-defined aliases on a specific port using the **perfshowfiltermonitor** command, to make sure the correct monitor counters are cleared. To clear statistics counters for all or a specified filter-based monitor, use the **perfclearfiltermonitor** command. After the command has been executed, the telnet shell confirms that the counters on the monitor have been cleared.

Note

In v4.2.0 and v3.1 issuing the command **portStatsClear** on a port will also result in all Filter-based monitors being cleared for all the ports in the same quad.

The example clears the statistics counters for a filter-based monitor 4 on port 2 in slot 1.

Example

```
switch:admin> perfclearfiltermonitor 1/2, 4
Filter-based monitor number 4 counters are cleared
```

Saving and Restoring Monitor Configurations

The **perfcfgsave** command is used to save the current end-to-end and filter monitor configuration settings into flash memory. You can use the **perfcfgrestore** command to restore the saved monitor configuration from flash memory. For example, after a power cycle you want to use the same end-to-end and filter monitoring configuration that was in effect prior to the power cycle.

To save a monitor configuration use the **perfcfgsave** command to save the monitor configuration settings.

Example

```
switch:admin> perfcfgsave
This will overwrite previously saved Performance Monitoring settings in FLASH ROM. Do
you want to continue? (yes, y, no, n): [no]
Please wait...
Committing configuration...done.
Performance monitoring configuration saved in FLASH ROM.
```

To restore a monitor configuration use the **perfcfgrestore** command to restore the saved monitor configuration.

Example

```
switch:admin> perfcfgrestore
This will overwrite current Performance Monitoring settings in RAM. Do you want to
continue? (yes, y, no, n): [no]
Please wait...
Performance monitoring configuration restored from FLASH ROM.
```

The **perfcfgclear** command is used to clear the previously saved performance monitoring configuration settings from flash memory, as in the example.

Example

```
switch:admin> perfcfgclear
This will clear Performance Monitoring settings in FLASH ROM. The RAM settings won't
change. Do you want to continue? (yes, y, no, n): [no]
Please wait...
Committing configuration...done.
Performance Monitoring configuration cleared from FLASH.
```

8

Q

This chapter tells you how to use Brocade Fabric OS commands to use the optionally licensed Brocade ISL Trunking feature. Use the **licenseshow** command to verify that the trunking license key is installed to your SilkWorm 3250, 3850, or 3900 switch or 12000 or 24000 director.

This chapter has the following information:

- "Introducing Brocade ISL Trunking Commands," on page 9-2
- "Gathering Traffic Data," on page 9-2
- "Enabling and Disabling ISL Trunking," on page 9-4
- "Setting Port Speed," on page 9-5
- "Displaying Trunking Information," on page 9-6
- "Debugging a Trunking Failure," on page 9-7
- "ISL Trunking Tips," on page 9-7

Introducing Brocade ISL Trunking Commands

Table 9-1 lists the commands used to configure and manage the optionally licensed Brocade ISL Trunking feature.

Command	Use
portcfgspeed	Specifies the port speed.
portcfgtrunkport	Enables or disables trunking for a particular port.
portperfshow	Monitors traffic across ports, so that you can optimize trunking in your fabric.
switchcfgspeed	Sets all ports of the switch to a particular speed.
switchcfgtrunk	Enables or disables trunking for all the ports of a switch.
trunkdebug	Debugs a trunk link failure.
trunkshow	Displays trunking information.

 Table 9-1
 ISL Trunking Commands

How to use these commands is illustrated in the remainder of this chapter. For further information on these commands, refer to the *Fabric OS Reference Manual*.

Gathering Traffic Data

To effectively implement Brocade ISL Trunking, you must monitor your traffic to determine the best location for trunking in your fabric. The following subsections describe three methods of viewing fabric traffic data:

- Using the command-line interface (CLI)
- Using the optionally licensed Brocade Advanced Performance Monitoring feature
- Using Brocade Fabric Watch

Using the CLI to View Traffic Data

You can use the **portperfshow** command, introduced in Table 9-1, to record traffic volume for each port in your fabric over time, to identify which paths are congested and would benefit most from the implementation of trunking groups. You can also use this command to identify frequently dropped links, so that you can perform troubleshooting and so that the links can be returned to trunking groups as necessary.

To gather traffic data using the CLI:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command syntax, where *interval* is the number of seconds between each data-gathering sample:

```
portperfshow [interval]
```

The default is one sample every second.

- 3. Record the traffic flow for each port participating in an ISL.
- 4. Repeat Steps 1 through 3 for the other switches in the fabric as required, until all ISL traffic flow is captured (in a very large fabric, it might be necessary to identify and capture the key ISLs only).

Additionally, repeat Steps 1 through 3 throughout the day (or entire work cycle), to capture varying traffic patterns under different conditions.

The following example shows a SilkWorm 3200 switch without trunking and indicates underutilized links (ports 0, 1, 2) and congested links (ports 4, 5):

swit	ch:admin>	portp	erfshow					
0	1	2	3	4	5	6	7	Total
0	0	0	145m	204m	202m	0	168m	719
0	0	0	145m	206m	208m	0	186m	745
swit	ch:admin>							

The next example shows traffic flowing through a trunking group of three ports in a SilkWorm 3200 switch, with one of the links failing after the second reading, causing redistribution of traffic over the remaining two links in the group:

swit	ch:admin	> portpe	erfshow						
0	1	2	3	4	5	6	7	Total	
									-
0	0	0	0	0	145m	144m	145m	434	
0	0	0	0	0	144m	143m	144m	431	
0	0	0	0	0	162m	0	162m	324	
0	0	0	0	0	186m	0	186m	372	
0	0	0	0	0	193m	0	192m	385	
0	0	0	0	0	202m	0	202m	404	
0	0	0	0	0	209m	0	209m	418	
swite	ch:admin	1>							

Using Performance Monitoring to View Traffic Data

Using the optionally licensed Brocade Advanced Performance Monitoring feature, you can monitor traffic flow and to view the impact of different fabric configurations on performance.

For complete instructions on using Brocade Performance Monitoring, refer to Chapter 8, "Performance Monitor Procedures".

Using Fabric Watch to Gather Traffic Data

Finally, using Brocade Fabric Watch, you can monitor traffic flow through specified ports on the switch and send alerts when the traffic exceeds or drops below configurable thresholds. This allows you to monitor changes in traffic patterns and adjust the fabric design accordingly, such as by adding, removing, or reconfiguring ISLs and trunking groups.

For instructions on configuring Fabric Watch thresholds and alerts, refer to the *Fabric Watch User's Guide*.

Enabling and Disabling ISL Trunking

You can enable and disable Brocade ISL Trunking for an individual port or for an entire switch. Procedures for each scenario are described next.

Enabling and Disabling Trunking on a Port

Use either telnet and serial sessions to enable and disable trunking on a port, as follows:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command syntax:

```
portcfgtrunkport slotnumber/portnumber 1|0
```

where:

slotnumber	Specifies the number of the slot in which the port card containing the port is
	located; only required for switches with slots.

portnumber Specifies the number of the port on which you want to enable or disable trunking.

1|0 Enables (1) or disables (0) trunking on the specified port.

For example, to enable trunking for slot 1, port 3:

```
switch:admin> portcfgtrunkport 1/3 1
done.
switch:admin>
```

Trunking is enabled on slot 1, port 3.

Enabling and Disabling Trunking on a Switch

To enable or disable trunking for *all* of the ports on a switch:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command syntax:

switchcfgtrunk 1|0

Specify 1 to enable or 0 to disable trunking on all ports in the switch.

For example, to enable all ports on the switch for trunking:

```
switch:admin> switchcfgtrunk 1
Committing configuration...done.
switch:admin>
```

Setting Port Speed

You can set port speeds either for the entire switch or for individual ports. If trunking is enabled, the only supported speeds are 2 Gbits/sec and autonegotiate. If trunking is not enabled, 1 Gbit/sec is also supported.

Setting the Speed for All Ports on a Switch

To specify the speed for *all* the ports on the switch:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command syntax:

switchcfgspeed speedlevel

In this syntax speedlevel represents link speed, as follows:

0 Autonegotiating mode

The port automatically configures for the highest speed.

1 1 Gbit/sec mode

The port will be at a fixed speed of 1 Gbit/sec. This setting is not supported if trunking is enabled on the port.

2 2 Gbit/sec mode

The port will be at a fixed speed of 2 Gbit/sec.

For example, to set the speed for all ports on the switch to 2 Gbit/sec:

```
switch:admin> switchcfgspeed 2
Committing configuration...done.
switch:admin>
```

To set the speed for all ports on the switch to autonegotiate:

```
switch:admin> switchcfgspeed 0
Committing configuration...done.
switch:admin>
```

Setting the Speed for a Port

To specify the speed for an individual port:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command syntax:

portcfgspeed slotnumber/portnumber speedlevel

where:

	slotnumber	Th	The number of the switch slot; only required for switches with slots		
	portnumber	Th	The number of the port		
	speedlevel	Th	The speed of the link, as follows:		
		0	Auto-negotiating mode		
		1	The port automatically configures for the highest speed.		
		1	1 Gbit/sec mode		
			Fixes the port at a speed of 1 Gbit/sec (not supported if trunking is enabled on the port)		
		2	2 Gbit/sec mode		
			Fixes the port at a speed of 2 Gbit/sec		
For	example, to set the	he sp	beed for port 3 on slot 2 to 2 Gbit/sec:		

```
switch:admin> portcfgspeed 2/3 2
done.
switch:admin>
```

To set the speed for port 3 on slot 2 to autonegotiate:

```
switch:admin> portcfgspeed 2/3 0
done.
switch:admin>
```

Note

Shuba, transition to next section?

Displaying Trunking Information

You can use Brocade Advanced Web Tools, a telnet session, or a serial session to view information about the trunking groups on the local switch.

Use the **trunkshow** command to display information about trunking groups. This command provides information in tabular format, including the following columns of data:

- Number of the trunking group
- Port-to-port connections of the group, listed by port number (local port -> remote port)
- WWNs of the local ports in the group
- Deskew values

The time difference for traffic to travel over each ISL as compared to the shortest ISL in the group. The number corresponds to nanoseconds divided by 10. The firmware automatically sets the minimum deskew value of the shortest ISL to 15.

• Whether the port is the master port for the trunking group

To display trunking information:

- 1. Connect to the switch as the administrator.
- 2. Enter trunkshow, as follows:

```
switch:admin> trunkshow
1: 1 -> 1 10:00:00:60:69:04:10:83
                                      deskew 16 Master
   0 -> 0
             10:00:00:60:69:04:10:83
                                      deskew 15
 2: 4 -> 4 10:00:00:60:69:04:01:94
                                      deskew 16 Master
   5 -> 5 10:00:00:60:69:04:01:94
                                      deskew 15
   7 -> 7 10:00:00:60:69:04:01:94
                                      deskew 17
   6 -> 6 10:00:00:60:69:04:01:94
                                      deskew 16
3:14 -> 14
            10:00:00:60:69:04:10:83
                                      deskew 16 Master
             10:00:00:60:69:04:10:83
  15 -> 15
                                      deskew 15
switch:admin>
```

The next section describes how to debug a trunking failure.

Debugging a Trunking Failure

If a trunked ISL link fails, you can obtain debugging information through the CLI and use it to troubleshoot the problem and correct it.

To view debugging information for a trunking ISL failure:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command syntax, where *AreaNumber* is the number of one and another port in the trunking group, respectively:

```
trunkdebug AreaNumber1, AreaNumber2
```

The following example shows viewing debug information for ports 3 and 5, where port 3 has not correctly configured as an E_Port:

```
switch:admin> trunkdebug 3 5
port 3 is not E port
switch:admin>
```

ISL Trunking Tips

This section provides important tips on Brocade Fabric OS v4.2.0 ISL trunking.

- Brocade ISL trunking does not replace Dense Wavelength Digital Multiplexing (DWDM). DWDM is a ring topology; it has a different function than trunking. If a DWDM ISL fails, the traffic is rerouted over alternate routes, changing the data path.
- A trunking master ISL is not the same as the principal ISL. The roles are different, although they might apply to the same ISL. "Trunking master ISL" applies to the role of directing traffic over a trunking group. "Principal ISL" applies to an ISL that is used to communicate with the principal switch, where the principal switch assigns domain IDs for the fabric.

- Brocade ISL Trunking is only supported for inter-switch links. You cannot create a trunk between a switch and a SAN device, such as host or storage.
- There is no limit on the number of trunking groups on one switch. The number of trunking groups that can be implemented on a switch is limited only by the number of available ports.
- If there are eligible ISLs, trunks are automatically established when the Brocade ISL Trunking feature's license is activated. Trunking capability is enabled by default on each port.
- If a slave ISL fails, the traffic is redistributed over the remaining ISLs in the group.
- If a master ISL fails, a new master ISL is designated and traffic is redistributed. If any in-transit frames are lost, there is a brief pause in the I/O.
- Although port statistics are usually fairly evenly balanced, they can vary with payload variations at the frame level. They need not be the same across all participating ISLs in a trunk.
- ISL trunking supports the "L0" extended fabric mode (the default mode). If the ports in the potential trunking group use any other modes, the trunking group does not form.
- Trunking requires 2 Gbit/sec capacity.

This chapter provides information on Brocade zoning procedures using Fabric OS commands, including:

- "License Activation," on page 10-1
- "Zoning Commands," on page 10-1
- "Managing Aliases," on page 10-2
- "Managing Zones," on page 10-5
- "Managing Configurations," on page 10-9

License Activation

Use the **licenseshow** command to verify that the *zoning* license is installed to your switch. Refer to "Managing Licensed Features" on page 1-8 for more information on activating a feature using license keys.

Zoning Commands

Table 10-1 lists commands used to configure and manage zoning. For detailed information on these commands, refer to the *Fabric OS Reference Manual*.

Table 10-1Zoning Commands

Command	Description	
Zone Alias		
aliadd	Add a member to an alias.	
alicreate	Create an alias.	
alidelete	Delete an alias.	
aliremove	Remove a member from an alias.	
alishow	Display an alias in the zone database.	
Zone		
zoneadd	Add a member to a zone.	
zonecreate	Create a zone.	

Command	Description
zonedelete	Delete a zone.
zoneremove	Remove a member from a zone.
Configuration	
cfgadd	Add a zone to a zone configuration.
cfgcreate	Create a zone configuration.
cfgdelete	Delete a zone configuration.
cfgremove	Remove a zone from a zone configuration.
Zoning Management	
cfgclear	Clear all zone configurations.
cfgdisable	Disable a zone configuration.
cfgenable	Enable a zone configuration.
cfgsave	Save zone configurations in flash memory.
cfgshow	Display the zone database.
cfgtransabort	Aborts the current zoning transaction, and all changes since the last cfgsave operation.

 Table 10-1
 Zoning Commands (Continued)

Managing Aliases

An alias is a logical group of ports, WWNs, or AL_PAs. Specifying groups of ports or devices as an alias makes zone configuration easier, by enabling you to configure zones using an alias rather than a long string of individual members. You can specify members of an alias using the following methods:

- Switch domain and port area number pair, for example, "2, 20". View the area numbers for ports using the **switchshow** command.
- WWN (device)
- Arbitrated loop physical address (AL_PA)

These procedures change the Defined Configuration. For the change to be preserved across switch reboots, it must be saved to non-volatile memory using the **cfgsave** command. For the change to become effective, an appropriate zone configuration must be enabled using the **cfgenable** command.

Creating an Alias

To create an alias, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

```
alicreate "aliName", "member1; member2"
```

10

aliName	Specify a name for the alias in quotation marks. An alias name must begin with a letter and can be followed by any number of letters, digits and underscore characters. Names are case sensitive, for example "Ali_1" and "ali_1" are different aliases. Blank spaces are ignored.
member	Specify a member or list of members to be added to the alias, in quotation marks, separated by semicolons. An alias member can be specified by one or more of the following methods:
	 A switch domain and port area number pair. View the area numbers for ports using the switchshow command. WWN
Save the change	e to the Defined Zone Database by entering the following command:

cfgsave

3.

Example

To create an alias:

```
switch:admin> alicreate "array1", "2,32; 2,33; 2,34; 4,4"
switch:admin> alicreate "array2", "21:00:00:20:37:0c:66:23; 4,3"
switch:admin> alicreate "loop1", "0x02; 0xEF; 5,4"
switch:admin> cfgsave
```

Adding a Member to an Alias

To modify the members of an alias, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

```
aliadd "aliName", "member1; member2"
```

- *aliName* Specify a name for the alias in quotation marks. This alias must already exist in the zone database. Names are case sensitive, for example "Ali_1" and "ali_1" are different aliases.
- *member* Specify a member or list of members to be added to the alias, in quotation marks, separated by semi-colons. An alias member can be specified by one or more of the following methods:
 - A switch domain and port area number pair. View the area numbers for ports using the **switchshow** command.
 - WWN
- 3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To add members to an alias:

```
switch:admin> aliadd "array1", "1,2"
switch:admin> aliadd "array2", "21:00:00:20:37:0c:72:51"
switch:admin> aliadd "loop1", "0x02; 0xEF"
switch:admin> cfgsave
```

Removing a Member from an Alias

To modify the members of an alias, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

aliremove "aliName", "member1; member2"

```
    aliName Specify a name for the alias in quotation marks. This alias must already exist in the zone database. Names are case sensitive, for example "Ali_1" and "ali_1" are different aliases.
    member Specify a member or list of members to be removed from the alias, in quotation
```

ther Specify a member or list of members to be removed from the alias, in quotation marks, separated by semi-colons. An alias member can be specified by one or more of the following methods:

- A switch domain and port area number pair. View the area numbers for ports using the **switchshow** command.
- WWN
- 3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To remove members from an alias:

```
switch:admin> aliremove "arrayl", "1,2"
switch:admin> aliremove "array2", "21:00:00:20:37:0c:72:51"
switch:admin> aliremove "loop1", "0x02; 0xEF"
switch:admin> cfgsave
```

When using this command, the order in which the members appear in the list is critical. For more information on this command, please refer to the *Fabric OS Reference Manual*.

Deleting an Alias

To delete an alias, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

```
alidelete "aliName"
```

- *aliName* Specify a name for the alias in quotation marks. This alias must already exist in the zone database. Names are case sensitive, for example "Ali_1" and "ali_1" are different aliases.
- 3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To delete an alias:

```
switch:admin> alidelete "array1"
switch:admin> cfgsave
```

Viewing Aliases in the Zone Database

To view an alias, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

alishow "pattern", mode

A character string used to match alias names. This operand must be enclosed in quotation marks. Patterns may contain:

- Question mark (?) that matches any single character.
- Asterisk (*) that matches any string of characters.
- Ranges that match any character within the range. Ranges must be enclosed in brackets, for example, [0-9] or [a-f].

mode

pattern

Specify 0 to display the contents of the transaction buffer (the contents of the current transaction), or specify 1 to display the contents of the non-volatile memory. The default value is 0.

If no parameters are specified, the entire zone database (both the defined and effective configuration) is displayed.

Example

Show all zone aliases beginning with "arr":

```
switch:admin> alishow "arr*"
alias: array1 21:00:00:20:37:0c:76:8c
alias: array2 21:00:00:20:37:0c:66:23
```

Managing Zones

A zone is a region within the fabric, where switches and devices can communicate. A device can only communicate with other devices connected to the fabric within its specified zone. You can specify members of a zone using the following methods:

- Alias names
- Switch domain and port area number pair, for example, "2, 20". View the area numbers for ports using the **switchshow** command.
- WWN (device)
- Arbitrated loop physical address (AL_PA)

These procedures change the Defined Configuration. For the change to be preserved across switch reboots, it must be saved to non-volatile memory using the **cfgsave** command. For the change to become effective, an appropriate zone configuration must be enabled using the **cfgenable** command.

Creating a Zone

To create an zone, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

zonecreate "	zoneName", "member1; member2"
zoneName	Specify a name for the zone in quotation marks. An zone name must begin with a letter and can be followed by any number of letters, digits and underscore characters. Names are case sensitive, for example "Zone_1" and "zone_1" are different zones. Blank spaces are ignored.
member	Specify a member or list of members to be added to the zone, in quotation marks, separated by semi-colons. An zone member can be specified by one or more of the following methods:
	 A switch domain and port area number pair. View the area numbers for ports using the switchshow command. WWN
Example	

```
switch:admin> zonecreate "greenzone", "2,32; 2,33; 2,34; 4,4"
switch:admin> zonecreate "redzone", "21:00:00:20:37:0c:66:23; 4,3"
switch:admin> cfgsave
```

3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Adding a Member to an Zone

To modify the members of an zone, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

zoneadd "zoneName", "member1; member2"

zoneName Specify a name for the zone in quotation marks. This zone must already exist in the zone database. Names are case sensitive, for example "Zone_1" and "zone_1" are different zones.

member Specify a member or list of members to be added to the zone, in quotation marks, separated by semi-colons. An zone member can be specified by one or more of the following methods:

- A switch domain and port area number pair. View the area numbers for ports using the **switchshow** command.
- WWN
- 3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To add members to a zone:

```
switch:admin> zoneadd "greenzone", "1,2"
switch:admin> zoneadd "redzone", "21:00:00:20:37:0c:72:51"
switch:admin> zoneadd "bluezone", "0x02; 0xEF"
switch:admin> cfgsave
```

Removing a Member from a Zone

To modify the members of an zone, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

zoneremove "zoneName", "member1; member2"

zoneName	Specify a name for the zone in quotation marks. This zone must already exist in the zone database. Names are case sensitive, for example "Zone_1" and "zone_1" are different zones.
member	Specify a member or list of members to be removed from the zone, in quotation marks, separated by semi-colons. An zone member can be specified by one or more of the following methods:
	• A switch domain and port area number pair. View the area numbers for ports

- A switch domain and port area number pair. View the area numbers for ports using the switchshow command.
- WWN
- 3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To remove members from a zone:

```
switch:admin> zoneremove "greenzone", "1,2"
switch:admin> zoneremove "redzone", "21:00:00:20:37:0c:72:51"
switch:admin> zoneremove "bluezone", "0x02; 0xEF"
switch:admin> cfgsave
```

When using this command, the order in which the members appear in the list is critical. For more information on this command, please refer to the *Fabric OS Reference Manual*.

To delete an zone, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

zonedelete "zoneName"

```
zoneName
```

Specify a name for the zone in quotation marks. This zone must already exist in the zone database. Names are case sensitive, for example "Zone_1" and "zone 1" are different zones.

3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To delete a zone:

```
switch:admin> zonedelete "bluezone"
switch:admin> cfgsave
```

Viewing Zones in the Zone Database

To view a zone in the zone database, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

zoneshow "pattern", mode

pattern

A character string used to match zone names. This operand must be enclosed in quotation marks. Patterns may contain:

- Question mark (?) that matches any single character.
- Asterisk (*) that matches any string of characters.
- Ranges that match any character within the range. Ranges must be enclosed in brackets, for example, [0-9] or [a-f].

mode

e Specify 0 to display the contents of the transaction buffer (the contents of the current transaction), or specify 1 to display the contents of the non-volatile memory. The default value is 0.

If no parameters are specified, the entire zone database (both the defined and effective configuration) is displayed.

Example

Show all zones beginning with A, B, or C:

```
switch:admin> zoneshow "[A-C]*"
zone: Blue_zone 1,1; array1; 1,2; array2
zone: Bobs_zone 4,5; 4,6; 4,7; 4,8; 4,9
```

Managing Configurations

The maximum number of items that can be stored in the zoning configuration database depends on the switches in the fabric, whether or not interop mode is enabled, and the number of bytes required for each item. The number of bytes required for an item depends on the specifics of the fabric, but cannot exceed 64 bytes per item. At 64 bytes per item you can have

- 767 entries for a fabric with at least one 2.x or 3.x switch and interop mode disabled
- 383 entries for a fabric with at least one 2.x or 3.x switch and interop mode enabled
- 997 entries for a fabric consisting solely of 4.x switches and interop mode disabled
- 498 entries for a fabric consisting solely of 4.x switches and interop mode enabled

You can use the **cfgSize** command to check both the maximum available size and the currently saved size. See the *Brocade Fabric OS Reference* for details on the **cfgSize** command. If you believe you are approaching the maximum, you can save a partially completed zoning configuration and use the **cfgSize** command to determine the remaining space

Creating a Configuration

To create a configuration, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

cfgcreate "cfgName", "member1; member2"

cfgName	Specify a name for the configuration in quotation marks. A configuration name must begin with a letter and can be followed by any number of letters, digits and underscore characters. Names are case sensitive, for example "Cfg_1" and "cfg_1" are different configurations. Blank spaces are ignored.
member	Specify a member or list of members to be added to the configuration, in quotation marks, separated by semi-colons. A configuration member can be specified by one or more of the following methods:

- Zone names
- FA (Fabric Assist) zone names
- 3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To create a configuration:

switch:admin> cfgcreate "NEW_cfg", "redzone; bluezone; greenzone"

Adding a Member to a Configuration

To modify the members of a configuration, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

```
cfgadd "cfgName", "member1; member2"cfgNameSpecify a name for the configuration in quotation marks. This configuration must<br/>already exist in the zone database. Names are case sensitive, for example<br/>"Cfg_1" and "cfg_1" are different configurations.memberSpecify a member or list of members to be added to the configuration, in<br/>reaction marks, accounted by complete a configuration member.
```

quotation marks, separated by semi-colons. A configuration member can be specified by one or more of the following methods:

- Zone names
- FA (Fabric Assist) zone names
- 3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To add a member to a configuration:

switch:admin> cfgadd "newcfg", "bluezone"

Removing a Member from a Configuration

To modify the members of a configuration, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

cfgremove "cfgName", "member1; member2"

cfgName	Specify a name for the configuration in quotation marks. This configuration must
	already exist in the zone database. Names are case sensitive, for example
	"Cfg_1" and "cfg_1" are different configurations.

- *member* Specify a member or list of members to be removed from the cfg, in quotation marks, separated by semi-colons. A configuration member can be specified by one or more of the following methods:
 - Zone names
 - FA (Fabric Assist) zone names
- 3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To remove *redzone* from a configuration:

switch:admin> cfgremove "newcfg", "redzone"

When using this command, the order in which the members appear in the list is critical. For more information on this command, please refer to the *Fabric OS Reference Manual*.

10

Deleting a Configuration

To delete a configuration, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

cfgdelete "cfgName"

cfgName

Specify a name for the configuration in quotation marks. This configuration must already exist in the zone database. Names are case sensitive, for example "Cfg 1" and "cfg 1" are different configurations.

3. Save the change to the Defined Zone Database by entering the following command:

cfgsave

Example

To delete a configuration:

```
switch:admin> cfgdelete "testcfg"
switch:admin> cfgsave
```

Aborting Changes to a Configuration

If changes to a configuration need to be aborted, use the **cfgtransabort** command. When this command is executed, all changes since the last save operation (performed with the **cfgsave** command) will be aborted.

In the next example, assume that the removal of a member from zone1 was done in error.

Example

To abort configuration changes:

```
switch:admin> aliadd "ali1","2,4"
switch:admin> zoneremove "zonel","3,5"
switch:admin> cfgtransabort
```

Note that in this example, the alteration to the alias **ali1** was also aborted, since no **cfgsave** command was performed prior to the **cfgtransabort** command.

Viewing Configurations in the Zone Database

To view a configuration in the zone database, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter the following command:

```
cfgshow "pattern", mode
```

pattern	A character string used to match configuration names. This operand must be enclosed in quotation marks. Patterns may contain:
	• Question mark (?) that matches any single character.
	• Asterisk (*) that matches any string of characters.
	• Ranges that match any character within the range. Ranges must be enclosed in brackets, for example, [0-9] or [a-f].
mode	Specify 0 to display the contents of the transaction buffer (the contents of the current transaction), or specify 1 to display the contents of the non-volatile memory. The default value is 0.

If no parameters are specified, the entire zone database (both the defined and effective configuration) is displayed.

Example

To show all zone configuration information:

```
switch:admin> cfgshow
Defined configuration:
 cfg: new1 Blue_zone
 cfg: NEW_cfg Red_zone; Blue_zone
 zone: Blue_zone
   1,1; array1; 1,2; array2
 zone: Red_zone
    1,0; loop1
 alias: array1 21:00:00:20:37:0c:76:8c; 21:00:00:20:37:0c:71:02
 alias: array2 21:00:00:20:37:0c:76:22; 21:00:00:20:37:0c:76:28
 alias: loop1 21:00:00:20:37:0c:76:85; 21:00:00:20:37:0c:71:df
Effective configuration:
 cfg: NEW_cfg
 zone: Blue_zone
     1,1
     21:00:00:20:37:0c:76:8c
     21:00:00:20:37:0c:71:02
     1,2
     21:00:00:20:37:0c:76:22
     21:00:00:20:37:0c:76:28
   zone: Red_zone
     1,0
     21:00:00:20:37:0c:76:85
     21:00:00:20:37:0c:71:df
```

To show only configuration names:

```
switch:admin> cfgshow *
  cfg: a_cfgl zonel; zone2
  cfg: b_cfg2 zonel; zone2; zone3
  switch:admin>
```

This chapter includes the following FICON[®] administration and monitoring instructions:

- "Overview" on page 11-1
- "QuickStart Procedure" on page 11-2
- "Configuring the Switch in a FICON® Environment" on page 11-3
- "Changing the Domain ID" on page 11-5
- "Enabling or Disabling IDID Mode" on page 11-8
- "Identifying IDID Mode Enabled Switches" on page 11-10
- "Displaying Link Incidents" on page 11-11
- "Displaying Registered Listeners for Link Incidents" on page 11-12
- "Displaying Node Identification Data" on page 11-12
- "Identifying Port Swapping Nodes" on page 11-14
- "Identifying Ports That Have Completed the RNID Exchange" on page 11-15
- "Enabling Port Swapping" on page 11-16
- "Disabling Port Swapping" on page 11-16
- "Swapping Ports" on page 11-16
- "Monitoring FRU Failure Information" on page 11-17
- "Clearing the FICON® Management Database" on page 11-18
- "Troubleshooting" on page 11-18

Overview

Fabric OS v4.2.0 provides a variety of methods to administer and monitor FICON[®] fabrics:

- Command line interface (CLI)
- Advanced Web Tools
- SNMP Agent and FICON[®] Management Information Base (MIB)

In addition to these tools, you can also use Fabric Manager, an optionally licensed management tool, to monitor fabrics with $FICON^{$ devices.

Table 11-1 provides an overview of which Brocade management tools can be used to administer and/or monitor $FICON^{\mathbb{R}}$ fabrics.

Action	Command Line Interface	Advanced Web Tools	SNMP/ FICON [®] MIB	Fabric Manager
"Monitoring FRU Failure Information"	ficonshow ILIR	N.A.	Yes	View Menu/ Events
"Displaying Link Incidents"	ficonshow RLIR	N.A.	Yes	View Menu/ Events
"Displaying Registered Listeners for Link Incidents"	ficonshow LIRR	N.A.	Yes	N.A.
"Displaying Node Identification Data"	ficonshow RNID ficonshow switchRNID	N.A.	N.A.	Device Ports View
"Identifying Port Swapping Nodes"	portswapshow	Switch Admin/ Port Setting	N.A.	Yes, through Advanced Web Tools
"Enabling Port Swapping"	portswapenable	N.A.	N.A.	N.A.
"Disabling Port Swapping"	portswapdisable	N.A.	N.A.	N.A.
"Swapping Ports"	portswap	N.A.	N.A.	N.A.
"Identifying Ports That Have Completed the RNID Exchange"	N.A.	N.A.	N.A.	Device Ports View/ Capability Column
"Changing the Domain ID"	configure	Switch Admin/ Switch Info	N.A.	Yes, through Advanced Web Tools
"Enabling or Disabling IDID Mode"	configure	Switch Admin/ Configure (Fabric) Tab	N.A.	Yes, through Advanced Web Tools
"Identifying IDID Mode Enabled Switches"	N.A.	N.A.	N.A.	Switch View/ IDID Column
"Clearing the FICON® Management Database"	ficonclear RLIR ficonclear RNID	N.A.	N.A.	N.A.

 Table 11-1
 Administration and management of FICON[®] fabrics using Brocade products

QuickStart Procedure

To verify that the system is ready to be used in a $FICON^{(R)}$ environment, complete the following steps at a command prompt:

- 1. Connect to the system with administrative privileges.
- 2. *If in a cascaded environment,* enter **licenseshow** to verify that any required licenses (Secure Fabric OS and Zoning) are activated.

- 3. *If in a cascaded environment*, enter **secmodeshow** to determine if Secure Fabric OS is enabled; if it is disabled, enable security.
- 4. *If in a cascaded environment*, enter **secpolicyshow** to verify that the SCC_POLICY is active.
- 5. Enter switchshow to verify that the switch and devices are online.
- 6. Enter **ficonshow rnid** to verify that the FICON[®] devices are registered with the switch.
- 7. Enter the **ficonshow lirr** to verify that the FICON[®] host channels are registered to listen for link incidents.

Configuring the Switch in a FICON[®] Environment

This section describes how to configure your switches in a FICON[®] environment. Use the following worksheet to record your configuration information. Appendix A, "FICON Configuration Worksheet" contains a full worksheet that you can print.

Table 11-2

FICON	[®] Directo	or Config	uration	Worksheet					
FICON	[®] Directo	or Manufa	acturer:		Туре:		Mode	el: S/N	
HCD de FICON [©]	efined Sv ® Directo	witch ID_ or Domai	n ID	_(Switch ID) (Switch @)	Correspo	onding ca	scaded	Yes Director Domain	
FICON	[®] Directo	or F_Port	S		Attached	N_Ports	/ E_Port	s (CU, CPC, or I	SL)
Slot Numb er	Port Numb er	Port Addre ss	Laser Type: LX / SX	Port Name	Node Type CU / CHNL	Machi ne Type	Model	Serial Number	ISL CU I/F CPC CHPID

Recommended Configuration Settings

Following are some recommended FICON[®] configuration settings:

- Disable Dynamic Load Sharing (DLS).
- Enable In-Order Delivery.
- Enable VC Translate (VC_XLT) on Extended Fabrics Links, which stabilizes the link.

Although no specific zoning rules related to FICON[®] apply, following are some Zoning recommendations:

- Follow standard FCP Zoning practices.
- For management purposes, put FCP devices in one zone and FICON[®] devices in another zone when operating in an intermix environment.

Switched Point-to-Point Configuration

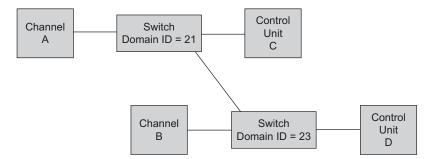

For a single-switch configuration (switched point-to-point), no specific configuration needs to be done. However, the Channel must be configured to use single-byte addressing. If the Channel is set up for two-byte addressing, then the cascaded configuration setup applies.

Figure 11-1 shows a legal, noncascaded configuration. This configuration does not require IDID and Fabric Binding, provided that Channel A and Channel B are configured for single-byte addressing. IDID is *recommended*, however, to ensure that domain IDs are maintained.

In this configuration example, the following are legal paths:

- Channel A to Control Unit C
- Channel B to Control Unit D

Figure 11-1 Switched point-to-point configuration

Cascaded Configuration

To configure each switch in a cascaded topology:

- 1. Disable each switch in the fabric.
- 2. For each switch:
 - a. Enable the IDID flag
 - b. Set the domain ID
 - c. Install Security certificates and keys

- 3. Enable the switches; this builds the fabric.
- 4. Enable Secure mode and define the primary FCS. Note that each switch in the fabric reboots and the fabric is rebuilt.
- 5. Establish Security Policies, including the fabric binding WWN list, through the Primary FCS. Be sure to activate the SCC POLICY. These policies are distributed to each switch in the fabric.
- 6. Connect and enable Channel and Control Unit (CU) devices. The QSA response to the Channel indicates that the fabric binding and IDID are enabled.

Figure 11-2 and Figure 11-3 show two legal, cascaded configurations. These configurations require Channel A to be configured for two-byte addressing and require IDID and Fabric Binding. Also note that you can have only two switches in the SB-2 Channel to CU path.

Figure 11-2 Cascaded configuration, two switches

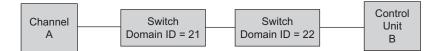
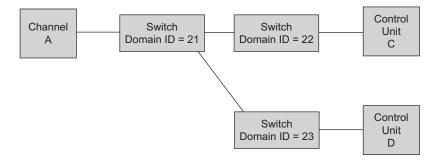



Figure 11-3 Cascaded configuration, three switches

Changing the Domain ID

The default domain ID for SilkWorm 24000, 12000, 3900, 3850 and 3250 switches is "1". This statement applies to both logical switches within a SilkWorm 12000 switch, as in both cases, the domain ID is "1." To prevent domain conflict, you should either

- Disable one of the switches until both are connected to the fabric and then reenable the switches; unique domain IDs are automatically assigned.
- Manually change the domain ID of one of the logical switches before connecting it to the fabric.

You can change the domain ID of a switch using the command line interface or Advanced Web Tools, each of which is described next. For either method, use a domain ID value between 1 and 239 for normal operating mode (FCSW compatible).

Note

You must disable a switch before changing the domain ID.

Using Fabric Manager

To set the domain ID on a switch using Fabric Manager, perform the following steps:

- 1. Launch Fabric Manager.
- 2. Enter the IP address or switch name of a switch in the fabric in the Address field.
- 3. Click the Admin View icon. Web Tools launches and prompts you to connect.
- 4. Connect as administrator. The Switch Admin window opens.
- 5. Click the Switch Information tab (see Figure 11-4 on page 11-6).

Figure 11-4 Setting the domain ID

chName: Core_sw0	DomainID: 166 VW/N:	10:00:00:60:69:80:0d:ca	Tue Feb 25 2003, 5:1
License Admin Port Switch Information	Setting Routing E Network Conf	Extended Fabric Configu fig Upload/Do	
Name and ID	-		
Name	Core_sw0	Manufacturer Serial #	FT02X800DCA
Domain ID	166	Supplier Serial #	none
Switch Status		Email Configuration	
📀 Enable 🔿 Disable		DNS Server 1	123.123.123.123
		DNS Server 2	123.123.123.124
Report			
View Report		Domain Name	
			Remove All
		Apply Close	Reset Refresh

- 6. Select Disable.
- 7. Click the Apply button to disable the switch.
- 8. Enter new domain ID in the Domain ID field.
- 9. Click the Apply button.
- 10. Select Enable.
- 11. Click the Apply button to reenable the switch.

Using Advanced Web Tools

To set the domain ID on a switch using Advanced Web Tools, perform the following steps:

- 1. Launch your Web browser.
- 2. Enter the switch name or IP address in the Location/Address field.

The Switch Explorer view appears.

- 3. From the navigation tree in the left pane, click the appropriate switch icon.
- 4. Click the Admin button to open the Administration View.
- 5. Connect as admin.

The Administration View appears.

- 6. Click the Switch Information tab (see Figure 11-4 on page 11-6).
- 7. Select Disable.
- 8. Click the Apply button to disable the switch.
- 9. Enter new domain ID in the Domain ID field.
- 10. Click the Apply button.
- 11. Select Enable.
- 12. Click the Apply button to reenable the switch.

Using CLI Commands

To set the domain ID on a switch using the CLI, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter switchdisable to disable the switch.
- 3. Enter configure.
- 4. Enter y at the command prompt after "Fabric Parameters."
- 5. Enter a new domain ID after "Domain," as shown:

Example

```
switch:admin> configure
Configure...
Fabric Parameters (yes, y, no, n): [no] y
Domain (1...239): [1] 3
...
```

- 6. Complete the remaining prompts (or press Ctrl-D to accept the other settings and exit.)
- 7. Enter switchenable to re-enable the switch.

Note

For a detailed description of configure command output, refer to the Fabric OS Reference.

11-7

Enabling or Disabling IDID Mode

Using Fabric Manager

To enable or disable IDID Mode using Fabric Manager, perform the following steps:

- 1. Launch Fabric Manager.
- 2. Enter the IP address or switch name of a switch in the fabric in the Address field.
- 3. Click the Admin View icon. Web Tools launches and prompts you to connect.
- 4. Connect as admin. The Switch Admin window opens.
- 5. Click the Switch Information tab (see Figure 11-4 on page 11-6).
- 6. Select Disable.
- 7. Click the Apply button to disable the switch.
- 8. Click the **Configure** tab (see Figure 11-5).

Figure 11-5 Enabling or disabling IDID Mode

witchName: uly10	Dom	ainID: 10 VWVN	4: 10:00:00:60:I	69:80:0f:c	:8	M	on Jul 28, 2003, 3:52
Switch Informa License Admin	tion Port Setting	Network C Routing	onfig Extended I	 Fabric	Upload/Dowr Configure	COLUMN TO A COLUMN	SNMP SNMP
Fabric Parameters							
	BB Credit	16			🗖 Sequer	ice Level	Switching
	R_A_TOV	10000			🗖 Disable	me Rout	ing Priority
	E_D_TOV	2000			C Suppre	ss Class	
	Datafield Size	2112			🗹 Insister	nt Domai	n ID Mode
Fabric Virtual Chan	nel Arbitrated Lo	oop System					
			A	pply	Close	Reset	Refresh
▼ Switch Administrat	ion opened]:	Mon Jul 28	2003, 3:5	O PM			

9. To enable IDID Mode, check the "Insistent Domain ID Mode" checkbox; to disable, un-check the "Insistent Domain ID Mode" checkbox.

11

- 10. Click Apply.
- 11. Click the Switch Information tab.
- 12. Select Enable.
- 13. Click the Apply button to reenable the switch.

Using Advanced Web Tools

To enable or disable IDID Mode using Advanced Web Tools, perform the following steps:

- 1. Launch your Web browser.
- 2. Enter the switch name or IP address in the Location/Address field. The Switch Explorer View appears.
- 3. From the navigation tree in the left pane, click the appropriate switch icon.
- 4. Click the Admin button to open the Administration View.
- 5. Connect as admin. The Administration View appears.
- 6. Click the Switch Information tab (see Figure 11-4 on page 11-6).
- 7. Select Disable.
- 8. Click the Apply button to disable the switch.
- 9. Click the **Configure** tab (see Figure 11-5 on page 11-8).
- 10. To enable IDID Mode, check the "Insistent Domain ID Mode" checkbox; to disable, un-check the "Insistent Domain ID Mode" checkbox.
- 11. Click Apply.
- 12. Click the Switch Information tab.
- 13. Select Enable.
- 14. Click the Apply button to reenable the switch.

Using CLI Commands

To enable or disable IDID Mode using the CLI, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter switchdisable to disable the switch.
- 3. Enter configure.
- 4. Enter y after "Fabric Parameters".
- 5. To enable IDID Mode, enter y after "Insistent Domain ID Mode"; to disable, enter n.

Example

```
switch:admin> configure
Configure...
Fabric parameters (yes, y, no, n): [no] yes
   Domain: (1..239) [3] 5
   R_A_TOV: (4000..120000) [10000]
   E_D_TOV: (1000..5000) [2000]
   Data field size: (256..2112) [2112]
   Sequence Level Switching: (0..1) [0]
   Disable Device Probing: (0..1) [0]
   Suppress Class F Traffic: (0..1) [0]
   VC Encoded Address Mode: (0..1) [0]
   Per-frame Route Priority: (0..1) [0]
   Long Distance Fabric: (0..1) [0]
   BB credit: (1..16) [16]
Insistent Domain ID Mode (yes, y, no, n): [yes]
Virtual Channel parameters (yes, y, no, n): [no]
Switch Operating Mode (yes, y, no, n): [no]
Zoning Operation parameters (yes, y, no, n): [no]
RSCN Transmission Mode (yes, y, no, n): [no]
Arbitrated Loop parameters (yes, y, no, n): [no]
System services (yes, y, no, n): [no]
Portlog events enable (yes, y, no, n): [no]
Committing configuration...done.
switch:admin>
```

- 6. Complete the remaining prompts (or press Ctrl-D to accept the other settings and exit.)
- 7. Enter switchenable to reenable the switch.

Note

For a detailed description of the configure command output, refer to the Fabric OS Reference.

Identifying IDID Mode Enabled Switches

To identify IDID Mode-enabled switches using Fabric Manager, perform the following steps:

- 1. Launch Fabric Manager.
- 2. Enter the IP address or switch name of a switch in the fabric in the Address field.
- Select Switch View.
 The IDID column identifies switches that have IDID Mode enabled with a value of "true."

Displaying Link Incidents

Using Fabric Manager

To display link incidents, perform the following steps:

- 1. Launch Fabric Manager.
- 2. Enter the IP address or name of a switch in the fabric in the Address field.
- Select the Events View.
 The EventSrc column identifies the source of link incidents as FICON or MSFICON.
 The source of implicit incidents are identified as EM or FW.

Using CLI Commands

Using the CLI, you can display link incidents for

- The local switch.
- All FICON[®] switches defined in the fabric.

The Registered Link Incident Record (RLIR) ELS contains the link incident information sent to a listener N_Port.

To display link incidents for the *local switch*, perform the following steps:

- 1. Connect to the switch as a user.
- 2. Enter ficonshow rlir.

Example

switch:user> ficonshow rlir

Note

For a detailed description of the ficonshow command output, refer to the Fabric OS Reference.

To display link incidents for all switches defined in the fabric, perform the following steps:

- 1. Connect to the switch as a user.
- 2. Enter ficonshow rlir fabric.

Example

switch:user> ficonshow rlir fabric

Note

For a detailed description of the ficonshow command output, refer to the Fabric OS Reference.

Displaying Registered Listeners for Link Incidents

Using the CLI, you can display registered listeners for link incidents for either the local switch or all switches defined in the fabric.

To display registered listeners for link incidents for the local switch, perform the following steps:

- 1. Connect to the switch as a user.
- 2. Enter ficonshow lirr.

Example

switch:user> ficonshow lirr

11

Note

For a detailed description of the ficonshow command output, refer to the Fabric OS Reference.

To display registered listeners for link incidents for *all switches defined in the fabric*, perform the following steps:

- 1. Connect to the switch as a user.
- 2. Enter ficonshow lirr fabric.

Example

switch:user> ficonshow lirr fabric

Note

For a detailed description of the ficonshow command output, refer to Fabric OS Reference.

Displaying Node Identification Data

Using Fabric Manager

To display node identification data for the local switch using Fabric Manager, perform the following steps:

- 1. Launch Fabric Manager.
- 2. Enter the IP address or switch name of a switch in the fabric in the Address field.
- 3. Select the Device Ports View.

Using CLI Commands

Using the CLI, you can display node identification data for

• The local switch.

- All switches defined in the fabric.
- All devices registered with the local switch.
- All devices registered with all switches defined in the fabric.

Note

The following examples use the **ficonshow** command. For a detailed description of the **ficonshow** command output, refer to the *Fabric OS Reference*.

To display node identification data for the *local switch*, perform the following steps:

- 1. Connect to the switch as a user.
- 2. Enter ficonshow switchrnid.

Example

switch:user> ficonshow switchrnid

To display node identification data for the *all switches defined in the fabric*, perform the following steps:

- 1. Connect to the switch as a user.
- 2. Enter ficonshow switchrnid fabric.

Example

```
switch:user> ficonshow switchrnid fabric
```

To display node identification data for *all devices registered with the local switch*, perform the following steps:

- 1. Connect to the switch as a user.
- 2. Enter ficonshow rnid.

Example

switch:user> ficonshow rnid

To display node identification data for *all devices registered with all switches defined in the fabric*, perform the following steps:

- 1. Connect to the switch as a user.
- 2. Enter ficonshow rnid fabric.

```
Example
```

switch:user> ficonshow rnid fabric

Identifying Port Swapping Nodes

Using Fabric Manager

To display information about swapped ports using Fabric Manager, perform the following steps:

- 1. Launch Fabric Manager.
- 2. Enter the IP address or switch name of a switch in the fabric in the Address field.
- 3. Click the Admin View icon. Web Tools launches and prompts you to connect.
- 4. Connect as admin. The Switch Admin window opens.
- 5. Click the Port Setting tab (see Figure 11-6).

Swapped ports display current Area ID but nonswapped ports do not. The **Port(AreaID)** column in Figure 11-6 displays two swapped ports: ports 12 and 15. The numbers in parenthesis indicate the Area ID.

Switch In	formation	Ĩ	Network Cont	5a [Lisloos	l/Download) SNM
License Admin	Port Se	tting R	1	Extended Fabric	1	- F	runk Information
Port(ArealD)	Persistent Disable	Enable Port	Enable Trunking	Port State	Current Speed	Change Speed	Port Name
0		N	V	No_Module	N2	Negotiate 💌	
1		V	V	No_Light	N2	Negotiate 💌	
2		N		Online	N2	Negotiate 💌	
3		V	V	Online	N1	Negotiate 💌	
4		V	V	No_Light	N2	Negotiate 💌	
5		N		No_Light	N2	Negotiate 💌	
6		V	V	Online	N1	Negotiate 💌	
7		V	V	No_Light	N2	Negotiate 💌	
8		N		No_Light	N2	Negotiate 💌	
9		V	V	No_Light	N2	Negotiate 💌	
10		V	V	No_Light	N2	Negotiate 💌	
11		N		No_Light	N2	Negotiate 💌	
12(31)		V	V	No_Light	N2	Negotiate 💌	
13		v	V	No_Light	N2	Negotiate 🖃	
14		V	V	No_Light	N2	Negotiate 🖃	
15(28)		V	V	Online	N1	Negotiate 💌	
lot_1 _Slot_2	Slot_3 Slot_4	lay 16 2003,2	2:17 PM	Appl	y Clos	e Reset	Refresh

Using Advanced Web Tools

To display information about swapped ports using Advanced Web Tools, perform the following steps:

- 2. Enter the switch name or IP address in the Location/Address field. The Switch Explorer View appears.
- 3. From the navigation tree in the left pane, click on the appropriate switch icon.
- 4. Click the admin button to open the Administration View.
- 5. Connect as admin. The Administration View appears.
- 6. Click the **Port Setting** tab (see Figure 11-6 on page 11-14).

Swapped ports display current Area ID but nonswapped ports do not. The **Port(AreaID)** column in Figure 11-6 displays two swapped ports: ports 12 and 15. The numbers in parenthesis indicate the Area ID.

Using CLI Commands

1. Launch your Web browser.

To display information about swapped ports in a switch using the CLI, perform the following steps:

- 1. Connect to the switch as admin.
- 2. Enter portswapshow.

Example

switch:admin> portswapshow

Note

For a detailed description of the **portswapshow** command output, refer to the *Brocade Fabric OS Reference*.

Identifying Ports That Have Completed the RNID Exchange

Using Fabric Manager

To identify ports that have completed the RNID exchange using Fabric Manager, perform the following steps:

- 1. Launch Fabric Manager.
- 2. Enter the IP address or switch name of a switch in the fabric in the Address field.
- Select the Device Ports View. The Capability column identifies ports which have completed the RNID exchange with a value of "FICON."

Enabling Port Swapping

Using CLI Commands

To enable port swapping using the CLI, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter portswapenable.

Example

switch:admin> portswapenable

For a detailed description of the **portswapenable** command output, refer to the *Brocade Fabric OS Reference*.

Disabling Port Swapping

Note

Using CLI Commands

To disable port swapping using the CLI, perform the following steps:

- 1. Connect to the switch as the administrator.
- Enter portswapdisable at the command line, as shown in the following example.
 Example

switch:admin> portswapdisable

Note

Note

For a detailed description of the **portswapdisable** command output, refer to the *Brocade Fabric OS Reference*.

Swapping Ports

Using CLI Commands

The port swapping feature must be enabled using the **portswapenable** command before swapping ports (refer to "Enabling Port Swapping" on page 11-16).

To swap ports using the CLI, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Disable both ports to be swapped using the **portdisable** command.
- 3. Enter **portswap**, as shown in the following example. Any port in the switch can be used as the alternate for any other port within the same switch.

Example

switch:admin> portswap [slot/] portA [slot/]portB

In this example:

- *slot* is the slot number of the blade for a system with blades (optional).
- *portA* is the original port number.
- *portB* is the alternate port number.
- 4. Reenable the ports using the **portenable** command.

Note

For a detailed description of the **portdisable** and **portenable** command output, refer to the *Brocade Fabric OS Reference*.

Monitoring FRU Failure Information

Using Fabric Manager

To display FRU failure information on the local switch using Fabric Manager, perform the following steps:

- 1. Launch Fabric Manager.
- 2. Enter the IP address or name of a switch in the fabric in the Address field.
- Select the Events View.
 The EventSrc column identifies the source of implicit incidents, or FRU failures, as EM or FW.

Using CLI Commands

To display FRU failure information on the local switch using the CLI, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter ficonshow ilir.

Example

switch:admin> ficonshow ilir

To display FRU failure information for all switches defined in the fabric using the CLI, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter ficonshow ilir fabric.

Example

switch:admin> ficonshow ilir fabric

Note

For a detailed description of ficonshow command output, refer to Fabric OS Reference.

Clearing the FICON[®] Management Database

Using CLI Commands

To remove all the RLIR records stored in the local RLIR database, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter ficonclear rlir.

Example

switch:admin> ficonclear rlir

To remove all the "not current" RNID records stored in the local RNID database, perform the following steps:

- 1. Connect to the switch as the administrator.
- 2. Enter ficonclear rnid.

Example

switch:admin> ficonclear rnid

For a detailed description of the ficonclear command, refer to Fabric OS Reference.

Troubleshooting

Note

The following provide useful troubleshooting information.

- The usual support commands:
 - portlogdump
 - supportshow
 - Fabric Manager Event Log

- FICON[®]-specific debug trace.
 - All **ficonshow** outputs (with no filters, such as grep)
- Other detailed information for protocol-specific problems.
 - Display port data structures using the **ptdatashow** command.
 - Display port registers using the ptregshow command.
- For reproducible problems:
 - Obtain debug logs with the command:

setdbg MSFICON, n

where n=1 to 5 (preferred level is n=3)

- Turn on PT_DEBUG and various setdbg modules (such as INTR and SPEED).
- Return the debug settings to "0" when complete:

setdbg MSFICON, 0

11

This chapter provides information on setting up a heterogeneous fabric, that is, a fabric that includes both Brocade switches and other manufacturer's switches.

- "Interoperability"
- "Brocade Switch Requirements"
- "Supported Brocade Features"
- "Unsupported Brocade Features"
- "Configuration Recommendations"
- "Configuration Restrictions"
- "Pre-Configuration Planning"
- "Enabling Interoperability Mode"
- "Disabling Interoperability Mode"

Interoperability

The Interoperability mode enables Brocade switches and other manufacturer switch fabrics to exchange interoperability parameters in such a way that both fabric merge and form one single fabric with one principal switch and all unique domain IDs.

In a heterogeneous fabric, several features are not available in order to provide maximum compatibility between switches.

Use the **interopmode** command to enable or disable interoperability mode for individual Brocade switches. This feature enables other manufacturers' switches to be used in a Brocade fabric.

This command must be executed on all Brocade switches in the fabric. The switch must be rebooted after changing interoperability mode. Other manufacturers' switches may require the execution of one or more commands that select interoperability mode for their switches.

Note

Interoperability has only been tested on McData switches.

12

Brocade Switch Requirements

- All Brocade 2000 Series switches must be running Fabric OS 2.4.1 or greater. Brocade SilkWorm 24000 and 12000 directors, as well as Silkworm 3900, 3850 and 3250 switches must be running 4.x firmware. All other Brocade 3000 series switches must be running Fabric OS 3.0.1 or greater.
- Interoperability Mode cannot be guaranteed for firmware older than v4.0.x, 3.1x and 2.6.2x.
- A Zoning license and a Fabric license must be installed on each Brocade switch.

Note

Interoperability mode does not support Extended Edge PID mode.

McData Firmware Requirements

McData is currently the only switch that can operate with Inter operability mode.

- McData ED-5000 or equivalent OEM versions that are plug-compatible
- Firmware release 3.2

Supported Brocade Features

The following features are supported on Brocade switches only:

- Brocade Fabric Watch
- Brocade Fabric Access API functions can be accessed from Brocade switches only, but other manufacturers' switch information is reported. The object information and zoning actions are configurable from the API.
- Brocade's translative mode, which registers private storage target devices into the fabric, can be used in a heterogeneous fabric as long as the devices are directly connected to Brocade switches. The devices will be accessible from any port on the fabric.

Unsupported Brocade Features

In a heterogeneous fabric, the following Brocade optional features are not supported and cannot be installed on any switch in the Fabric:

- QuickLoop
- Displaced PID
- QuickLoop Zoning
- Secure Fabric OS
- Timer Server function
- Open E-Port
- Broadcast Zoning

- Management Server Service
- QuickLoop Fabric Assist
- Remote Switch
- Extended Fabrics
- Trunking

•

- Alias Server
- Platform Service
- Virtual Channels
- FC-IP

Configuration Recommendations

The following is recommended when configuring an interoperable fabric:

- Avoid Domain ID conflicts before fabric reconfiguration. There should not be duplicate domain IDs for switches joining the fabric.
- Add switches to the fabric slowly. You should wait for a fabric reconfiguration after adding each switch, when adding multiple switches to a fabric.
- Remove switches from the fabric slowly. You should wait for a fabric reconfiguration after removing each switch, when removing multiple switches from the fabric.

Configuration Restrictions

In interoperable fabrics, the following restrictions apply:

- There is an architecture maximum of 31 switches. However, the actual configuration tested is less.
- Domain IDs must be in the 97 to 127 value range for successful connection to McData switches. The firmware automatically assigns a valid domain ID, if necessary, when the **interopmode** command is enabled on the switch.
- Fabricshow only shows the WWN and Domain ID for McData. There will NOT be anything for IPor name. Brocade switches WILL show all of the above.
- When in Inter operability mode, ALL Brocade switches MUST have at least one direct connection to another Brocade switch. So, for example, you cannot have a Brocade switch connected to ONLY a McData switch.
- LC IBM GBICs are not supported if they are to be connected to a McData ISL.
- When a Brocade switch gets a new domain ID assigned through a fabric reconfiguration, it will write the new domainID to flash and the old domain ID value will be overwritten. When a McData switch gets a new domainID assigned through a fabric reconfiguration, it will keep the original domainID in flash. So then, when the domainID of a McData switch and a Brocade switch is changed via fabric reconfiguration, on the next and subsequent fabric reconfiguration, the Brocade switch will try to use the new ID (from the flash) while McData will try to use it's old ID (from the flash).

This situation may cause a domain ID overlap to occur during multiple fabric reconfigurations. Domain ID overlap is not supported for Brocade / McData inter operability.

- When in Interoperability mode, we do support one Brocade connected to one McDATA switch/ fabric.
- Between Brocade switches, you can connect more than one ISL when in Interoperability mode.

Zoning Restrictions

Zoning has the following restrictions in interoperable fabrics:

- Only Zoning by port WWN is allowed. That means using the device's port WWN, for example, 10:00:00:c9:28:c7:c6.
- Zone members specified by node WWN will be ignored.
- Zone configurations that use either physical port numbers or port IDs are not supported in interopmode. Zoning using port number uses the actual physical port numbers on the switch, for example slot 1, port 5. Zoning using port ID uses the device ID, for example, 010100.
- When there is no zoning configuration is in effect, the default effective configuration is all ports are isolated and traffic is not permitted. This is in contrast to the Brocade standard behavior when interoperability mode is off where all data traffic is enabled.
- The Brocade 3200, 3800 and 3900 switches and 12000 and 24000 directors provide hardware enforcement of the port WWN zones only for devices attached to its ports. Devices attached to endports on other manufacturers' switches or Brocade 2000 series switches are enforced by Name Server (soft) zoning only.
- Web Tools can be used for zone configuration as long as Brocade switches are directly connected to each other. If Web Tools is used to setup zoning, then Web Tools must be used as the only zone management method.
- Brocade switches behind a McData switch will only receive the effective configuration when a zone merge occurs. This is because McData only has an effective config and will discard the defined config when it sends merge info to the Brocade switch. However, a zone update will send both defined and effective config to ALL switches. Note, that the spec currently says that all Brocade switches must have a direct connection to the Brocade fabric.
- When a SilkWorm switch or director is reconfiguring, do NOT call any zoning commands that are supposed to propagate until the fabric routes are FULLY set up. Use the **fabricshow** command to verify that all of the fabric routes are set up and all of the switches IP addresses and names are present. This does not apply to McData as it will ONLY show the WWN and domainID.
- The maximum number of items that can be stored in the zoning configuration database depends on the switches in the fabric, whether or not interop mode is enabled, and the number of bytes required for each item. The number of bytes required for an item depends on the specifics of the fabric, but cannot exceed 64 bytes per item. At 64 bytes per item you can have
 - 767 entries for a fabric with at least one 2.x or 3.x switch and interop mode disabled
 - 383 entries for a fabric with at least one 2.x or 3.x switch and interop mode enabled
 - 997 entries for a fabric consisting solely of 4.x switches and interop mode disabled
 - 498 entries for a fabric consisting solely of 4.x switches and interop mode enabled

12

You can use the cfgSize command to check both the maximum available size and the currently saved size. If you believe you are approaching the maximum, you can save a partially completed zoning configuration and use the cfgSize command to determine the remaining space

Caution

When interop mode is in effect, the space available for the zoning database is only half the normal size.

Zone Name Restrictions

The name field must contain the ASCII characters that actually specify the name, not including any required fill bytes. Names must adhere to the following rules:

- A name must be between 1 and 64 characters in length;
- All characters must be 7 bit ASCII characters;
- The first character of a given name must be a letter. A letter is defined as either an upper case (A-Z) character or a lower case (a-z) character;
- Any character other than the first character must be a lower case character (a-z), an upper case character (A-Z), a number (0-9), or one of the following symbols (\$-^_).

Pre-Configuration Planning

Before enabling interoperability mode, the individual fabrics should be inspected for compatibility.

- Zones should be inspected to ensure that they meet the zone criteria and restrictions. Refer to "Zoning Restrictions".
- Remove or disable any unsupported optional features.
- Disable the Platform Management functions using the msplmgmtdeactivate command.

Enabling Interoperability Mode

To enable interoperability mode:

- 1. Verify that you have implemented all the Brocade prerequisites necessary to enable interoperability mode on the fabric. Refer to "Configuration Restrictions" and "Pre-Configuration Planning"
- 2. Connect to the switch as the administrator.
- 3. Disable the first switch, using the switchdisable command.
- 4. At the command line enter the **interopmode 1** command to enable inter operability. This command resets a number of parameters and enables interactive mode.
- 5. Reboot the switch after changing the interoperability mode.

Example

```
switch:admin> switchdisable
switch:admin> interopmode 1
The switch effective configuration will be lost when the operating mode is chang
ed; do you want to continue? (yes, y, no, n): [no] y
done.
Interopmode is enabled
Note: It is recommended that you reboot this switch for the new change to take e
ffect.
switch:admin>
```

- 6. Repeat this procedure on all Brocade switches in the fabric.
- 7. Other manufacturers switches may require the execution of a similar command to enable inter operability.
- 8. Once you have enabled inter operability mode on the Brocade switches and other manufacturer's switches, you can cable the other manufacturers switches into the Brocade fabric, one at a time.

Disabling Interoperability Mode

To disable inter operability mode:

- 1. Connect to the switch as the administrator.
- 2. Enter the switchdisable command to disable the switch.
- 3. At the command line enter the **interopmode 0** command to disable inter operability. This command resets a number of parameters and disables interactive mode.
- 4. Reboot the switch after changing the inter operability mode.

Example

```
switch:admin> switchdisable
switch:admin> interopmode 0
The switch effective configuration will be lost when the operating mode is chang
ed; do you want to continue? (yes, y, no, n): [no] y
done.
Interopmode is disabled
Note: It is recommended that you reboot this switch for the new change to take e
ffect.
switch:admin>
```

- 5. Wait for a fabric reconfiguration after adding each switch.
- 6. Repeat this procedure on all Brocade switches in the fabric.

This chapter provides information about the various switch port identifier (PID) formats used on SilkWorm switches, and procedures for changing the PID format, including best practices for updating an existing production SAN to a new PID format. This chapter contains the following sections

- "Understanding Switch PID Format"
- "Rebooting Hosts When Using PID Formats"
- "Rebooting Hosts When Using PID Formats"
- "Evaluating the Fabric"
- "Planning the Update Procedure"
- "Performing Disruptive PID Format Changes"

Understanding Switch PID Format

A PID is a Port Identifier. PIDs are used by the routing and zoning services in Fibre Channel fabrics to identify ports in the network. They are not used to uniquely identify a device; this is done using the World Wide Name (WWN).

Some device drivers map logical disk drives to physical Fibre Channel counterparts by PID. An example in a Windows HBA driver is "Drive E: = PID 011F00". Most drivers can either dynamically change PID mappings or use the WWN of the Fibre Channel disk for mapping, not the PID. For Example, "Drive E: = WWN 10:00:00:60:69:51:0e:8b".

The PID is a 24-bit address built from three fields: domain, area_ID, and AL_PA. Each of the domain, area_ID, and AL_PA portions of the PID require eight bits in the address space. Because of changing requirements in Fabric OS versions, different methods of specifying the area_ID were created.

There are four types of PID formats used by the existing SilkWorm switches

1. VC Encoded PID Format

This is the format defined by the SilkWorm 1000 series, and is the format used by other series products in order to interoperate with SilkWorm 1000 switches. In this format, out of the 8-bit Area ID, two bits are used for VC classes; the remaining bits are set to the port number. The format accommodates up to 64 ports per switch.

2. Native PID Format

This is the format defined by the Silkworm 2000 series, and is also the format carried forward by the SilkWorm 3000 series. This format allows the two series of products to fully interoperate. The upper four bits out of the 8-bit Area ID are set to 0001, and the remaining bits are set to the port number. The format can only accommodate up to 16 ports per switch.

3. Core PID Format

This format takes advantage of all the 8-bit address space and directly uses port number as the Area ID. It supports up to 256 ports per switch.

4. Extended Edge PID Format

All switches in a fabric must use the same PID format. If you change the PID format of switches in an existing fabric from Native PID format to Core PID format—perhaps to add a high port-count switch, the PIDs change and you might need to reboot your servers for them to reflect the new addresses. The Extended Edge PID format generates the same PID for a port on switches with 16 ports or less as would Native PID format, but also supports up to 128 ports per domain. This means that you can change the switches in a fabric from Native PID format to Extended Edge PID format without rebooting your hosts. It enables easy integration of low port count switches.

In the Extended Edge PID format, Area_ID = port-number + 0x10 and then masked to seven bits. So the Area_ID of port 0 is 0x10, for port 111, 0x7F, for port 112, 0x00, for port 127, 0x0F.

Extended Edge PID is supported in Fabric OS v2.6.2 and later, v3.1.2 and later and v4.2.0 and later.

Note

In addition to the four PID formats described above Interop mode supports additional PID formats. Those formats are not discussed in this chapter.

Rebooting Hosts When Using PID Formats

In some Fibre Channel SAN environments, storage devices and host servers are bound by their Fibre Channel addresses (called PID) to the host operating system. In these environments, the hosts and target HBAs in a SAN need to know the full 24-bit PIDs of the hosts and targets they are communicating with, but do not care how the PIDs are determined. But, if a storage device PID is changed, the host must reestablish a new binding, which requires the host to be rebooted. (The sections "Dynamic PID" on page 13-3 and "Changes to Configuration Data" on page 13-5 provide more detailed information about host PID binding.)

With the higher port counts available in recent switches and directors, the Native PID format used in SilkWorm 2000 and SilkWorm 3000 switches running Fabric OS 3.x needed to be replaced with a format capable of addressing higher port counts. In the Native PID format, four of the eight area bits are reserved and the port number is used for the remaining four bits. This allows only 16 unique port addresses per domain. For the Core PID format, all of the eight bits are available, allowing more unique port addresses per domain. The port number is used to fill all eight area bits. Because the four reserved bits in the Native PID format are always set to 0001, changing from Native PID format to Core PID format changes the PID.

The Extended Edge PID format breaks the pattern that the Area_ID is derived simply from the port number. By adding 0x10 to the port number, and then wrapping the result around when the result is greater than 0x7F, the Area_ID for port numbers less than 16 are the same under both Extended Edge PID formats and Native PID formats. No host or target reboots are required to switch from Native PID format to Extended Edge PID format.

If you need to make a change to the PID format on a fabric and the change might cause the PIDs to change follow the directions in the section "Moving to Extended Edge PID Format," to change to Extended Edge PID format, or "Moving to Core PID Format," to change to Core PID format.

Dynamic PID

WWN or dynamic PID binding is most typically used. In this case, changing the device's PID does not affect the mapping. However, before updating the PID format, it is necessary to determine whether or not any devices in the SAN bind by PID (refer to "Evaluating the Fabric" on page 13-12).

Static PID

For those few drivers that use static PID binding, when the format is changed, the mapping breaks and must be manually fixed. This can be done by rebooting the host, or using a manual update procedure on the host.

To manually correct broken mapping due to static PIDs, refer to the following sections for more detail:

- "Evaluating the Fabric" on page 13-12 of this chapter discusses in more detail the process of updating to a new PID format. This starts with evaluating a production SAN to see which if any devices bind by PID. Then either an online or offline update procedure is chosen to perform the actual update.
- "Performing Disruptive PID Format Changes" on page 13-16 provides examples of step-by-step instructions for certain PID-bound devices. These procedures are applicable to any of a broad class of routine maintenance tasks; indeed, they would apply to these devices in many scenarios with any Fibre Channel switch in any addressing mode.

As a general rule, do not use drivers that bind by PID. There are several routine maintenance procedures which might result in a device receiving a new PID. Examples include, but are not limited to:

- Changing "Compatibility Mode" settings
- Changing switch domain IDs
- Merging fabrics
- Relocating devices to new ports or new switches (that is, for Add, Move, Change type operations)
- Updating the core PID format
- Using hot spare switch ports to deal with failures

In every case where devices bind by PID, any such procedure becomes difficult or impossible to execute without downtime.

In some cases, device drivers allow the user to manually specify persistent bindings by PID. In these cases, such devices must be identified and an appropriate update procedure created. If possible, the procedure should involve changing from PID binding to WWN binding.

Selecting a PID format

All switches in a fabric must use the same PID format. If you add a switch using a different PID format to a fabric, the switch will segment from the fabric. The mode you select for your fabric depends on the mix of Fabric OS v2.x, v3.x and v4.x switches in the fabric, and to an extent on the specific releases of Fabric OS in use (for example, Extended Edge PID format is only available in Fabric OS v2.6.2 and

later, Fabric OS v3.1.2 and later, and Fabric OS v4.2.0 and later). Table 13-1 shows various combinations of existing fabrics, new switches added to those fabrics, and the recommended PID format for that combination. The recommendations are selected to first, eliminate host reboots, when possible, and second to minimize the need for a host reboot in the future.

Existing Fabric OS Versions and PID Format	Switch to Be Added	Recommendations (in Order of Preference)
v2.x/v3.x/v4.x; VC	v2.x/3.x/4.x	Use VC Encoded PID for new switch
Encoded PID		Host reboot is not required. Host reboot is required only if you use PID binding.
		Brocade Fabric OS v4.x does not support the VC Encoded PID format.
v2.x/v3.x; Native	v2.x/v3.x	1. Use Native PID format for new switch
PID		Host reboot is not required.
		2. Convert existing fabric to Extended Edge PID format, upgrading the version of Fabric OS, if necessary. Use Extended Edge PID format for new switch
		Host reboot is not required.
		3. Convert existing fabric to Core PID format, upgrading the version of Fabric OS, if necessary. Set Core PID format for new switch.
		Host reboot <i>is</i> required.
	v4.x	1. Convert existing fabric to Extended Edge PID format, upgrading the version of Fabric OS, if necessary. Use Extended Edge PID format for new switch
		Host reboot is not required.
		2. Convert existing fabric to Core PID format, upgrading the version of Fabric OS, if necessary. Set Core PID format for new switch.
		Host reboot <i>is</i> required.
v2.x/v3.x/v4.x;Core	v2.x/3.x/4.x	Use Core PID for new switch
PID		Host reboot is not required.
v2.x/v3.x/v4.x;	v2.x/3.x/4.x	Use Extended Edge PID for new switch
Extended Edge PID		Host reboot is not required.

Table 13-1 PID Format Recommendations When Adding New Switches

If you are building a new fabric with Fabric OS v2.x, or v3.x, or 4.x or any combination use Core PID format to simplify port to Area ID mapping.

13

Changes to Configuration Data

Caution

After changing the fabric PID format, if the change invalidates the configuration data (see Table 13-2 to determine), do not download (**configDownload**) old (pre-PID format change) configuration files to any switch on the fabric.

The PID is used to identify ports in a number of switch configuration databases (for example, zoning configuration data uses the PID) and is used to label ports for saved data such as performance monitor data. Some combinations of PID format transitions invalidate configuration databases and invalidate stored data. On the switch, the databases are automatically rebuilt, but saved configuration files (files generated by the **configDownload** command, for example) now contain out of date configuration data. Table 13-2 lists varies combinations of before and after PID formats and indicates whether the configuration is affected.

PID Format Before Change	PID Format After Change	Configuration Effect?
Native	Extended Edge	No impact
Extended Edge	Native	No impact
Native	Core	You must:
Core	Native	• Reenable zoning, if there is an active zone set.
Extended Edge	Core	• If Destination ID (DID) binding is used,
Core	Extended Edge	reconfigure persistent binding, and reconfigure DID list for performance monitor.

 Table 13-2
 Combinations of Before and After PID Format and Configuration Changes

After changing the fabric PID format and verifying correct fabric operation, resave configuration data by running the **configUpload** command.

Before downgrading firmware, change the PID back to supported PIDs such as Core PID. If the database is automatically converted, save the converted database, and then download the older OS.

Moving to Extended Edge PID Format

This section details the steps needed to move a fabric to Extended Edge PID format including the cases where you are moving the fabric because you are replacing an existing switch, adding a new switch, or with no switch changes.

The basic steps are

1. Determine if the current switch firmware versions meet the minimum supported version levels.

Table 13-3 lists the minimum Fabric OS version levels supporting Extended Edge PID format. Use this table to determine if the switches in your fabric need a firmware update before changing the PID format.

Table 13-3	Minimum FOS Version Levels for Extended Edge PID format	
------------	---	--

Silkworm Series 2000	SilkWorm 3200 and 3800 Switches	SilkWorm 3250, 3850, 3900, 12000, 24000 Switches
2.6.2	3.1.2	4.2.0

2. Update switch firmware as necessary.

You can use either the command line interface or WebTools to update the switch firmware. See the section "Updating Firmware Using the Command Line," for directions using the command line, or the section "Updating Firmware Using WebTools," for directions using WebTools.

3. Change the switch configuration in the fabric to Extended Edge PID format.

You can use either the command line interface or WebTools to change the PID format to Extended Edge, except that you cannot use WebTools to change the PID format on the SilkWorm 2000 series: use the command line interface. See the section "Configuring Extended Edge PID Format Using the Command Line," for directions using the command line, or the section "Configuring Extended Edge PID Format Using WebTools," for directions using WebTools.

Updating Firmware Using the Command Line

Use this procedure to update the firmware:

- Use the **fabricshow** command to verify the total number of switches in the fabric. 1.
- 2. Download the correct firmware version to each switch as necessary.
- 3. Reboot all switches.
- 4. Verify the switches form a single fabric and all domain IDs remain the same.
- 5. Verify the number of switches are the same.

Configuring Extended Edge PID Format Using the Command Line

Use this procedure to change the PID format and to verify fabric operations after the change:

1. Configure Extended Edge PID (Format 2) on each switch. (See Figure 13-1 for a sample configure command on a SilkWorm switch running Fabric OS 3.x and see Figure 13-2 for a sample configure command on a SilkWorm switch running Fabric OS 4.x.)

Figure 13-1 Configure Command on a Silkworm Switch Running Fabric OS 3.x

```
Configure...
Fabric parameters (yes, y, no, n): [no] yes
   Domain: (1..239) [217]
   BB credit: (1..27) [16]
   R_A_TOV: (4000..120000) [10000]
   E_D_TOV: (1000..5000) [2000]
   Data field size: (256..2112) [2112]
   Sequence Level Switching: (0..1) [0]
    Disable Device Probing: (0..1) [0]
    Suppress Class F Traffic: (0..1) [0]
    SYNC IO mode: (0..10 [0]
   VC Encoded Address Mode: (0..1) [0]
   Switch PID Format : (0..2) [0] 2
   Per-frame Route Priority: (0..1) [0]
   Long Distance Fabric: (0..1) [0]
   Virtual Channel parameters (yes, y, no, n): [no] ^D
 Committing configuration...done.
 0x102fd500 (tshell): Apr 15 16:53:31
   WARNING CONFIG-PIDCHANGE_DISPLACE, 3, Switch PID format changed to Extended Edge
PID Format
```

Figure 13-2 Configure Command on a Silkworm Switch Running Fabric OS 4.x

```
Configure...

Fabric parameters (yes, y, no, n): [no] yes

Domain: (1..239) [112]

R_A_TOV: (4000..120000) [10000]

E_D_TOV: (1000..5000) [2000]

Data field size: (256..2112) [2112]

Sequence Level Switching: (0..1) [0]

Disable Device Probing: (0..1) [0]

Suppress Class F Traffic: (0..1) [0]

VC Encoded Address Mode: (0..1) [0]

Switch PID Format: (1..2) [1] 2

Per-frame Route Priority: (0..1) [0]

Long Distance Fabric: (0..1) [0]

BB credit: (1..16) [16]
```

- 2. Run the SwitchEnable command all switches.
- 3. Verify that all the switches form a fabric.
- 4. Use the **SwitchShow** command to verify the interswitch links (ISLs) are correct and the device links are correct.
- 5. Use the **fabricshow** command to verify that the number of switches are the same as those when starting this procedure.

- 6. Use the **nsallshow** command to verify the total number of devices is the same as those when starting this procedure.
- 7. For dual fabrics, repeat steps 1 through 5 for the other fabric.

Updating Firmware Using WebTools

Use this procedure to update the firmware.

- 1. Launch WebTools and connect as admin.
- 2. Select **Firmware Upgrade** tab. Under **Function**, select **Firmware Download** button. Download the correct firmware to each switch in the fabric.

The appearance of screens is slightly different between switches running Fabric OS 3.x and switches running Fabric OS 4.x.

Figure 13-3 Firmware Download on Fabric OS 3.x

vitchName:		DomainId	I: 152 WWN:			Mon Apr 1	14-2003, 6:13 PM
Jser Admin	Configure	Routing	Trunk Infor	mation	Extended Fab	ric	
Switch Setting	s Netwo	rk Config	Firm Upgd	SNMP	Lic Admin	Report	Port Setting
Function							
Firmware	Download	O Boot S	witch				
🔿 Config Hg	load 🔿 Co	nfia Downl	oad 🔾 Conf	ia Default			
Host Details							
Protocol I	тр 🔻	User	Name root		н	lost IP 192.1	168.1.1
		D					aa
		Pas	sword		File	name N3.0	.3_rc2
Boot Options							
O FastBoot	O ReBoot	Powe	r On Self Test	E Fast	boot After Dow	nload	
				ок	Apply	Close	Reset
vitch Commit M							

/itchName:	DomainId: 51	VWWN:		Mon Apr	14 2003, 5:44 P
Port Setting Configure Switch Information	Routing Network Config	Extended Fabric Upload/Do	Remote Switc wnload St		nk Information cense Admin
Function					
Firmware Download	🔿 Config	Upload to Host	🔿 Config	Download to :	Switch
Host Details					
Protocol ftp 💌	Full install 🔽	Reboot after d	ownload 🔽	AutoCom	mit 🔽
User Name root			Host IP 192.168	3.1.1	
Password ****	****		Filename 1v4.0.4	veQ&eleese vi	int
Password [Filename pv4.0.4	rco/release.p	ist
Fi	rmware Download :	Status:			
		OF	C Apply	Close	Reset
_					
witch Administration opened]:	Mon Apr 14 2003, :	5:40 PM			

Figure 13-4 Firmware Download on Fabric OS 4.x

Configuring Extended Edge PID Format Using WebTools

Note

On a Series 2000 switch, you cannot use WebTools to configure Extended Edge PID format. You must use the command line.

Select **Configure** Tab. Under **Fabric Parameters**, choose the pulldown and select **Format 2**, then select **Apply** or **OK**. With Fabric OS 3.x, the default switch PID format is 0; with Fabric OS 4.x, the default switch PID format is 1. Figure 13-5 shows the Tab under Fabric OS 3.x, while Figure 13-6 shows the tab under Fabric OS 4.x.

witchName:			DomainId	152 WWN:				Tue Apr 1	5 2003, 10:31 AI	vi
User Admin		figure	Routing	Trunk Inform	1		ended Fabri			
Switch Settin	gs	Netwo	rk Config	Firm Upgd	SNMP	ſ	.ic Admin	Report	Port Setting	
Fabric Para	meter	S								
вв	Credit	16					🗌 Seque	nce Switc	hing	
B A	ι τον	10000					🗌 Disabl	e Device F	Probing	
		2000					Per-Fr	ame Routi	ng Priority	
-	-						🗌 Supre:	ss Class F	Traffic	
Dat	a Size	2112								
Switch PID F	ormat	Forma	at 2 (16-bas	e, 256 port En	coding)	-				
-Virtual Char	nnel Pa	aramete	ers							
VC Priori	ty 2 🛛			VC Priority 3	2		VC Pri	iority 4 2		
VC Priori	ty 5 🛛			VC Priority 6	3		VC Pri	iority 7 🛛		
Arbitrated L	-		ers		System	Serv	ices			
Send Fai					🗌 rstat	d	🗹 rapi	id		
Do Not A			×00		🗌 ruse	rsd	🗹 RLS	6 Probing		
1										
					ок		Apply	Close	Reset	
A -										
Switch Commit	Messa	ages							-	
									12	4

Figure 13-5 Select Switch PID Format 2 on Fabric OS 3.x

Figure 13-6 Select Switch PID Format 2 on Fabric OS 4.x

witchName:	DomainId: 51	VWVN:	Tue A	Apr 15 2003, 10:23 AM
Switch Information Port Setting Con	Network Confi figure Routing	a Upload/Dow Extended Fabric	nload SNMP Remote Switch	License Admin Trunk Information
Fabric Parameters				
BB Cred	iit 16		Sequence Level	Switching
R A TO	√ 10000		Disable Device P	
	√ 2000		Per-Frame Routin	
Datafield Siz			1	
	at Format 2 (16-base, 25	6 port Encoding) 🔽	1	
			-	
Fabric Virtual Chann	el Arbitrated Loop Sys	stem		
		OK Apply	Close Reset	Refresh
Switch Administration op	ened]: Tue Apr 15 2003,	10:18 AM		

Moving to Core PID Format

Setting the PID Format

You can set the PID format from the CLI or Web Tools. Only one format can be configured at a time. In v4.x, Native PID format is not supported. The default configuration is the Core PID format. In v2.x, Native PID format is the default configuration. In v3.x, Core PID format is the default configuration.

Note

Although the PID format is listed in the configuration file, do not change the setting directly there. Use the CLI command **configure** or Web Tools. When you use **configure** or Web Tools, switch databases that contain PID-sensitive information are automatically updated. If you change the setting in the config file and then download the edited config file, the PID format will be changed, but the databases entries will not be, and so will be incorrect.

When working from the CLI or Web Tools, use the following table to map the descriptive PID format names to the names used in the management interfaces.

Native PID format	Switch PID Address Mode 0
Core PID format	Switch PID Address Mode 1
Extended Edge PID format	Switch PID Address Mode 2

The VC Encode mode is either on or off. Only if it is off, can the other modes be set.

Note

Before changing the PID format, determine if host reboots will be necessary. The section "Rebooting Hosts When Using PID Formats" on page 13-2 summarizes the situations that might require a reboot. The section "Rebooting Hosts When Using PID Formats" on page 13-2 provides more detailed information.

Example

```
switch:admin> switchdisable
switch:admin> configure
Configure...
  Fabric parameters (yes, y, no, n): [no] y
   Domain: (1..239) [1]
   BB credit: (1..27) [16]
   R_A_TOV: (4000..120000) [10000]
   E_D_TOV: (1000..5000) [2000]
    WAN_TOV: (1000..120000) [0]
    Data field size: (256..2112) [2112]
    Sequence Level Switching: (0..1) [0]
    Disable Device Probing: (0..1) [0]
    Suppress Class F Traffic: (0..1) [0]
   SYNC IO mode: (0..1) [0]
    VC Encoded Address Mode: (0..1) [0] < Must be set to 0, to use other modes.
    Switch PID Address Mode: (0..2) [0] < Set mode number here.
   Per-frame Route Priority: (0..1) [0]
    Long Distance Fabric: (0..1) [0]
```

Evaluating the Fabric

If there is the possibility that your fabric has host devices with static PID bindings (See section "Rebooting Hosts When Using PID Formats" on page 13-2), you should evaluate your fabric to determine this. The fabric must be evaluated to:

- Find any devices which bind to PIDs
- Determine how each device driver will respond to the PID format change
- Determine how any multi-pathing software will respond to a fabric service interruption

If current details about the SAN are already available, it may be possible to skip the Data Collection step. If not, it is necessary to collect information about each device in the SAN. Any type of device may be able to bind by PID; each device should be evaluated prior to attempting an online update. This information has broad applicability, since PID-bound devices are not able to seamlessly perform in many routine maintenance or failure scenarios.

Collect Device, Software, Hardware, and Config Data

The following is a non-comprehensive list of information to collect:

- HBA driver versions
- Fabric OS versions
- RAID array microcode versions
- SCSI bridge code versions
- JBOD drive firmware versions

- Multi-pathing software versions
- HBA time-out values
- Multi-pathing software time-out values
- Kernel time-out values
- Configuration of switch

Make List of Manually Configurable PID Drivers

Some device drivers do not automatically bind by PID, but allow the operator to manually create a PID binding. For example, persistent binding of PIDs to logical drives might be done in many HBA drivers. Make a list of all devices that are configured this way. If manual PID binding is in use, consider changing to WWN binding.

Following are some of the device types that may be manually configured to bind by PID:

- HBA drivers (persistent binding)
- RAID arrays (LUN access control)
- SCSI bridges (LUN mapping)

Analyze Data

After you have determined the code versions of each device on the fabric, they must be evaluated to find out if any automatically bind by PID. It may be easiest to work with the support providers of these devices to get this information. If this is not possible, you may need to perform empirical testing.

No.		
-----	--	--

Note

Binding by PID can create management difficulties in a number of scenarios. It is recommended that you not use drivers that bind by PID. If the current drivers do bind by PID, upgrade to WWN-binding drivers if possible.

The drivers shipping by default with HP/UX and AIX at the time of this writing still bind by PID, and so detailed procedures are provided for these operating systems are provided in this chapter. Similar procedures can be developed for other operating systems that run HBA drivers that bind by PID.

I	e. 1
I	
I	
I	NO.
L	- 4

Note

There is no inherent PID binding problem with either AIX or HP/UX. It is the HBA drivers shipping with these operating systems that bind by PID. Both operating systems are expected to release HBA drivers that bind by WWN, and these drivers may already be available through some support channels. Work with the appropriate support provider to find out about driver availability.

It is also important to understand how multi-pathing software reacts when one of the two fabrics is taken offline. If the time-outs are set correctly, the switchover between fabrics should be transparent to the users.

Note

You should use the multipathing software to manually fail a path before starting maintenance on that fabric.

Perform Empirical Testing

Empirical testing may be required for some devices, to determine whether they bind by PID. If you are not sure about a device, work with the support provider to create a test environment.

Create as close a match as practical between the test environment and the production environment, and perform an update using the Online Update procedure, provided above.

Devices that bind by PID are unable to adapt to the new format, and one of three approaches must be taken with them:

- A plan can be created for working around the device driver's limitations in such a way as to allow an online update. See the Detailed Procedures section for examples of how this could be done.
- The device can be upgraded to drivers that do not bind by PID.
- Downtime can be scheduled to reset the device during the core PID update process, which generally allows the mapping to be rebuilt.

If either of the first two options are used, the procedures should again be validated in the test environment.

Determine the behavior of multi-pathing software, including but not limited to:

- HBA time-out values
- Multi-Pathing software time-out values
- Kernel time-out values

Planning the Update Procedure

Whether it is best to perform an offline or online update depends on the uptime requirements of the site.

• An offline update requires less advance planning than an online update. However, it requires that all devices attached to the fabric be offline.

• With careful planning, testing, and general due-diligence, it should be safe to update the core PID format parameter in a live, production environment. This requires dual fabrics with multi-pathing software. Avoid running backups during the update process, as tape drives tend to be very sensitive to I/O interruption. The online update process is only intended for use in **uptime-critical dual-fabric environments, with multi-pathing software** (high-uptime environments should always use a redundant fabric SAN architecture). Schedule a time for the update when the least critical traffic is running.

Note

All switches running any version of Fabric OS 4.x are shipped with the Core Switch PID Format enabled, so it is not necessary to perform the PID format change on these switches.

Migrating from manual PID binding (such as persistent binding on an HBA) to manual WWN binding and/or upgrading drivers to versions that do not bind by PID can often be done before setting the core PID format. This reduces the number of variables in the update process.

Outline for Online Update Procedure

The following steps are intended to provide SAN administrators a starting point for creating sitespecific procedures.

- 1. Back up all data and verify backups.
- 2. Verify that the multi-pathing software can automatically switchover between fabrics seamlessly. If there is doubt, use the software's administrative tools to manually disassociate or mark offline all storage devices on the first fabric to be updated.
- 3. Verify that I/O continues over the other fabric.
- 4. Disable all switches in the fabric to be updated, one switch at a time, and verify that I/O continues over the other fabric after each switch disable.
- 5. Change the PID format on each switch in the fabric.
- 6. After the fabric has re-converged, use the **cfgenable** command to update zoning.
- 7. Update their bindings for any devices manually bound by PID. This may involve changing them to the new PIDs, or preferably changing to WWN binding.

For any devices automatically bound by PID, two options exist:

- a. Execute a custom procedure to rebuild its device tree online. Examples are provided in the "Performing Disruptive PID Format Changes" on page 13-16 section of this chapter.
- b. Reboot the device to rebuild the device tree. Some operating systems require a special command to do this, for example "boot –r" in Solaris.
- 8. For devices that do not bind by PID or have had their PID binding updated, mark online or reassociate the disk devices with the multi-pathing software and resume I/O over the updated fabric.
- 9. Repeat with the other fabric(s).

Outline for Offline Update Procedure

The following steps are intended to provide SAN administrators a starting point for creating sitespecific procedures.

- 1. Schedule an outage for all devices attached to the fabric.
- 2. Back up all data and verify backups.
- 3. Shut down all hosts and storage devices attached to the fabric.
- 4. Disable all switches in the fabric.
- 5. Change the PID format on each switch in the fabric.
- 6. Re-enable the switches in the updated fabric one at a time. In a core/edge network, enable the core switches first.
- 7. After the fabric has re-converged, use the **cfgenable** command to update zoning (procedure provided below).
- 8. Bring the devices online in the order appropriate to the SAN. This usually involves starting up the storage arrays first, and the hosts last.
- 9. For any devices manually bound by PID, bring the device back online, but do not start applications. Update their bindings and reboot again if necessary. This may involve changing them to the new PIDs, or may (preferably) involve changing to WWN binding.
- 10. For any devices automatically bound by PID, reboot the device to rebuild the device tree (some operating systems require a special command to do this, such as "boot -r" in Solaris).
- 11. For devices that do not bind by PID or have had their PID binding updated, bring them back up and resume I/O.
- 12. Verify that all I/O has resumed correctly.

Hybrid Update

It is possible to combine the online and offline methods for fabrics where only a few devices bind by PID. Since any hybrid procedure is extremely customized, it is necessary to work closely with the SAN service provider in these cases.

Performing Disruptive PID Format Changes

This section includes a basic procedure that summarizes the steps necessary, but various hosts require different detailed procedures. This section includes the following topics:

- "Basic Update Procedures" on page 13-17
- "HP/UX" on page 13-18
- "AIX Procedure" on page 13-19

Basic Update Procedures

This process should be executed as part of the overall online or offline update process. However, it may be implemented in a stand-alone manner on a non-production fabric, or a switch that has not yet joined a fabric.

 Ensure that all switches in the fabric are running Fabric OS versions that support the addressing mode. It is recommended that you use v2.6.2 for SilkWorm 2000 series switches, v3.1.2 for SilkWorm 3200 and 3800 switches, and v4.2.0 for SilkWorm 12000 and 24000 directors, as well as SilkWorm 3900, 3850 and 3250 switches.

Note

All switches running any version of Fabric OS 4.x are shipped with the Core Switch PID Format enabled, so it is not necessary to perform the PID format change on these switches.

- 2. Telnet in to one of the switches in the fabric.
- 3. Disable the switch by entering the switchdisable command.
- 4. Enter the configure command (the configure prompts display sequentially).
- 5. Enter "y" after the "Fabric parameters" prompt.
- 6. Enter "1" at the "Core Switch PID Format" prompt.
- 7. Complete the remaining prompts or press CTRL-D to accept the remaining settings without completing all the prompts.
- 8. Repeat steps 2 through 7 for the remaining switches in the fabric.
- 9. Re-enable the switch by entering the switchenable command.

Example

```
switch:admin> switchdisable
switch:admin> configure
Configure...
  Fabric parameters (yes, y, no, n): [no] yes
    Domain: (1..239) [1]
    R_A_TOV: (4000..120000) [10000]
    E_D_TOV: (1000..5000) [2000]
   Data field size: (256..2112) [2112]
    Sequence Level Switching: (0..1) [0]
    Disable Device Probing: (0..1) [0]
    Suppress Class F Traffic: (0..1) [0]
    SYNC IO mode: (0..1) [0]
    VC Encoded Address Mode: (0..1) [0] 0
    Core Switch PID Format: (0..2) [0] 1
    Per-frame Route Priority: (0..1) [0]
    Long Distance Fabric: (0..1) [0]
    BB credit: (1..27) [16]
```

10. After all switches are updated to use the new PID format and re-enabled, verify that the fabric has fully re-converged (each switch "sees" the other switches).

11. Enter **cfgenable** [active_zoning_config] on one of the switches in the fabric to update zoning to use the new PID form.

This does not change the definition of zones in the fabric, but merely causes the lowest level tables in the zoning database to be updated with the new PID format setting. It is only necessary to do this once per fabric; the zoning update automatically propagates to all switches.

At this point, all switches in the fabric are operating in the new addressing mode.

HP/UX

This procedure is not intended to be comprehensive. It provide a starting point from which a SAN administrator could develop a site-specific procedure for a device that binds automatically by PID, and cannot be rebooted due to uptime requirements.

- 1. Backup all data. Verify backups.
- 2. If you are not using multi-pathing software, stop all I/O going to all volumes connected through the switch/fabric to be updated.
- 3. If you are not using multi-pathing software, unmount the volumes from their mount points using umount. The proper usage would be **umount <mount_point>**. For example:

umount /mnt/jbod

- 4. If you are using multi-pathing software, use that software to remove one fabric's devices from its configuration.
- 5. Deactivate the appropriate volume groups using vgchange. The proper usage would be vgchange –a n path_to_volume_group>. For example:

vgchange -a n /dev/jbod

6. Make a backup copy of the volume group directory using tar from within /dev. For example:

```
tar -cf /tmp/jbod.tar jbod
```

 Export the volume group using vgexport. The proper usage would be vgexport -m <mapfile> <path_to_volume_group>. For example:

```
vgexport -m /tmp/jbod_map /dev/jbod
```

- 8. Connect to each switch in the fabric
- 9. Issue the command switchDisable
- 10. Issue the command configure and change the Core Switch PID Format to 1.
- 11. Issue the command cfgEnable [effective_zone_configuration]. For example:

cfgEnable my_zones

- 12. Clean the lvmtab file by using the command vgscan.
- 13. Change to /dev and untar the file that was tared in step 4. For example:

tar -xf /tmp/jbod.tar

 Import the volume groups using vgimport. The proper usage would be vgimport -m <mapfile> <path_to_volume_group> <physical_volume_path>. For example:

vgimport -m /tmp/jbod_map /dev/jbod /dev/dsk/c64t8d0 /dev/dsk/c64t9d0

15. Activate the volume groups using vgchange. The proper usage would be vgchange – a y >path_to_volume_group>. For example:

vgexport -a y /dev/jbod

16. If you are not using multi-pathing software, mount all devices again and restart I/O. For example:

mount /mnt/jbod

17. If you are using multi-pathing software, re-enable the affected path. The preceding steps do not "clean up" the results from ioscan. When viewing the output of ioscan, notice the that the original entry is still there, but now has a status of NO HW.

# ioscan -f Class	funC disk I H/W Path	Driver S/W State H/W Type	Description
disk	0 0/0/1/1.2.0	adisk CLAIMED DEVICE	SEAGATE ST39204LC
disk	1 0/0/2/1.2.0	/dev/dsk/clt2d0 /dev/rdsk/clt2d0 adisk CLAIMED DEVICE	HP DVD-ROM 304
aibh	1 0/0/2/1.2.0	/dev/dsk/c3t2d0 /dev/rdsk/c3t2d0	
disk	319 0/4/0/0.1.2.255.14.8.0	adisk CLAIMED DEVICE	SEAGATE ST336605FC
disk	320 0/4/0/0.1.18.255.14.8.0	<pre>/dev/dsk/c64t8d0 /dev/rdsk/c64t8d adisk NO HW DEVICE</pre>	10 SEAGATE ST336605FC
arbit	526 5, 1, 0, 0.1.10.255.11.0.0	/dev/dsk/c65t8d0 /dev/rdsk/c65t8d	

18. To remove the original (outdated) entry, the command rmsf (remove special file) will be needed. The proper usage for this command would be rmsf -a -v <path_to_device>. For example:

rmsf -a -v /dev/dsk/c65t8d0

19. Validate that the entry has been removed by using the command **ioscan –funC disk**. Notice in the figure below that the NO_HW entry is no longer listed.

het46 (HP-50001)> ioscan -funC disk			
Class	I H/W Path	Driver S/W State H/W Type	Description
disk	0 0/0/1/1.2.0	adisk CLAIMED DEVICE	SEAGATE ST39204LC
		/dev/dsk/clt2d0 /dev/rdsk/clt2d0	
disk	1 0/0/2/1.2.0	adisk CLAIMED DEVICE	HP DVD-ROM 304
		/dev/dsk/c3t2d0 /dev/rdsk/c3t2d0	
disk	319 0/4/0/0.1.2.255.14.8.0	adisk CLAIMED DEVICE	SEAGATE ST336605FC
		/dev/dsk/c64t8d0 /dev/rdsk/c64t8d	10

20. Repeat for all fabrics.

21. Issue the switchEnable command. Enable the core switches first, then the edges.

AIX Procedure

This procedure is not intended to be comprehensive. It provide a starting point from which a SAN administrator could develop a site-specific procedure for a device that binds automatically by PID, and cannot be rebooted due to uptime requirements.

- 1. Backup all data. Verify backups.
- 2. If you are not using multi-pathing software, stop all I/O going to all volumes connected through the switch or fabric to be updated.

3. If you are not using multi-pathing software, varyoff the volume groups. The command usage is varyoffvg <volume_group_name>. For example:

varyoffvg datavg

4. If you are not using multi-pathing software, unmount the volumes from their mount points using umount. The command usage is **umount <mount_point>**. For example:

umount /mnt/jbod

- 5. If you are using multi-pathing software, use that software to remove one fabric's devices from its configuration.
- 6. Remove the device entries for the fabric you are migrating. For example, if the HBA for that fabric is fcs0, execute the command:

rmdev -Rdl fcs0

- 7. Connect to each switch in the fabric.
- 8. Issue the switchdisable command.
- 9. Issue the **configure** command and change the Core Switch PID Format to 1.
- 10. Issue the configenable [effective_zone_configuration] command. For example:

configenable my_config

Note

- 11. Issue the switchenable command. Enable the core switches first, then the edges.
- 12. Rebuild the device entries for the affected fabric using the **cfgmgr** command. For example:

cfgmgr -v

This command may take several minutes to complete.

13. If you are not using multi-pathing software, vary on the disk volume groups. The proper usage would be

varyonvg <volume_group_name>. For example:

varyonvg datavg

- 14. If you are not using multi-pathing software, mount all devices again and restart I/O. For example: mount /mnt/jbod
- 15. If you are using multi-pathing software, re-enable the affected path.
- 16. Repeat for all fabrics.

For detailed diagnostics information, refer to the Diagnostics and Error Message User's Guide.

This chapter provides information on diagnostics and displaying switch, port, and hardware status information.

- "About Diagnostics"
- "Persistent Error Log"
- "Configuring the Syslog Daemon"
- "Switch Diagnostics"
- "Port Diagnostics"
- "Hardware Diagnostics"

About Diagnostics

The purpose of the diagnostic subsystem is to evaluate the integrity of the system hardware. Diagnostics are invoked two ways:

- manually (through the Fabric OS command line)
 - or
- during the power on self test (POST)

The error messages generated during these test activities are sent to the serial console, error logs, and possibly to non-volatile storage. Each of these destinations may adjust the output format slightly to suite the purpose of the output media.

Manual Operation

During manual operation of diagnostics, the switch or blade typically needs to be in an offline state so as not to affect the fabric that the switch is placed in. There are exceptions to this policy. If a diagnostic needs the switch offline and finds that the switch is active, it will not run, and exits without harm to the fabric. Manual tests are useful in fault isolation, and various stress test environments. There is no single test that will give a comprehensive indication of the hardware status. They need to be run in concert to achieve this goal.

Power on Self Test (POST)

The POST tests give a quick indication of hardware readiness when hardware is powered up. These tests do not require user input to function. These tests typically operate within several minutes, and support minimal validation due to the restriction on test duration. Their purpose is to give a basic health check before new hardware is allowed to join a fabric. These tests are divided into two groups POST1 and POST2. POST1 validates the hardware interconnect of the switch/blade, and POST2 validates the ability of the switch/blade to pass data frames between the ports.

Diagnostic Command Set

The diagnostic command set can be divided into two categories:

- Control commands Act to support or evaluate the diagnostic operations independent of performing and actual test of hardware circuitry
- Test commands Act on hardware, and report anomalies when found.

There are two basic modes in which diagnostics can be manually run; they are normal interactive mode, and burnin mode. Burnin mode has additional control commands for its operation.

Diagnostics are also executed in the power on self test (POST) operation, but do not require user command input. They are automatically activated when Field Replaceable Units (FRUs) are brought on line.

The specific set of diagnostic and test commands run during POST depends on the switch model.

Diagnostic test commands (refer to the Fabric OS Command Reference for more information):

- portregtest
- sramretentiontest
- spinfab
- crossporttest
- portloopbacktest
- backport
- cmemretentiontest
- cmitest
- statstest
- portledtest
- filtertest

The following test commands are run during POST:

- turboramtest
- centralmemorytest
- cmitest
- camtest
- minicycle
- txdpath

14

- spinsilk
- backplanetest

Diagnostic control commands:

- diagenablepost
- diagdisablepost
- diagmodeshow
- statsclear
- diagshow
- diagstatus
- diagcommandshow
- diaghelp

Interactive Diagnostic Commands

When diagnostics are executed manually (from the Fabric OS command line), many commands require the switch/blade to be in an offline state. This ensures that the activity of the diagnostic does not interfere or disturb normal fabric traffic. If the switch/blade is not in an offline state (switchdisable, bladedisable), the **diagnostic** command will not run and display an error message. No one diagnostic can give a complete assessment of the viability of all the hardware. The diagnostic commands must be used together to get an overall picture of the health of the switch or blade. If an area of the hardware is suspected of having a fault, then a set of diagnostic commands can be used to isolate and validate the functionality of the hardware.

14

The Persistent Error Log feature prevents messages of lesser severity from over-writing messages of greater severity. For example, *Warning* messages cannot over write *Error*, *Critical* or *Panic* messages. Features of the persistent error log:

- The error log sub-system supports persistent logging. Each switch has its own persistent log.
- (12000/24000 specific) Persistent error logs are saved to the current active CP and are not carried over to the new active CP in the event of a failover. This does not apply to SilkWorm 3900, 3850 and 3250 switches, as those do not have CP cards.
- The persistent log is preserved across power cycles and system reboots.
- The persistent log has a default capacity to store 1024 error log entries.
- The persistent log can be resized at run time without having to reboot the switch or the system.
- The persistent log can be resized at run time to configure a maximum of 2048 entries. Basically persistent error log can be resized any where between 1024 and 2048 entries.

The Error Log sub-system can save a maximum of 1536 messages in RAM, that is, a total of 256 messages for each error message level (Panic, Critical, Error, Warning, Info, and Debug). In addition, important messages are stored in a separate persistent error log to guarantee that they are not lost in case of power outage or system reboot.

- The persistent log is implemented as a circular buffer. When more than the maximum entries are added to the persistent log, old entries are over-written by new entries.
- All error messages of levels Panic and Critical are automatically saved in the persistent log as they are logged. This guarantees that critical or panic level messages are not lost in the event of unexpected system reboot or fail-over.
- A command to control and filter messages to be saved in the persistent error log is provided. For example, you can specify that all log messages of level *Warning* or higher (basically *Error*; *Critical*, *Panic*) should be saved in the persistent error log.
- The commands **errdump** or **errshow** display a superset of the persistent log messages saved during previous system run time cycles and the error log messages generated during the current run time cycle.
- Options are provided to **errdump** command to display three options: all the errors (previous persistent log and the current run time log), only errors from the current run time cycle, or the errors from the persistent error log.
- Options are provided to clear the persistent error log. (errclear –p).

Note

Only the persistent log can be resized. The run time error log cannot be resized.

Displaying the Error Log Without Page Breaks

To display the switch error log all at once:

- 1. Connect to the switch as the administrator.
- 2. Enter the errdump command at the command line.

```
switch:admin> errdump
Error 04
_ _ _ _ _ _
0x576 (fabos): Mar 25 08:26:44 (1)
Switch: 1, Info TRACK-LOGIN, 4, Successful login
Error 03
_____
0x576 (fabos): Mar 24 16:01:44 (12)
Switch: 1, Info TRACK-CONFIG_CHANGE, 4, Config file change from task:ZNIPC
Error 02
0x2f0 (fabos): Mar 24 15:07:01
Switch: 1, Warning FW-STATUS_SWITCH, 3, Switch status changed from HEALTHY/OK to
Marginal/Warning
Error 01
0x271 (fabos): Mar 24 15:04:06
Switch: 1, Info EM-BOOT, 4, Restart reason: Failover
switch:admin>
```

Displaying the Error Log With Page Breaks

To display the error log:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the errshow command.

Example

```
switch:admin> errshow
Error 497
-----
0x4a5 (fabos): Oct 03 04:40:14
Switch: 0, Info TRACK-LOGIN, 4, Successful login
Type <CR> to continue, Q<CR> to stop: q
```

Clearing the Switch Error Log

To clear the error log for a particular switch instance:

- 1. Connect to the switch as the administrator.
- 2. Enter the **errclear -p** command to clear only the persistent errors. The error log in RAM is not cleared.

or

Enter the **errclear** command (with no operands) to clear the RAM memory, and remove persistent messages from the default **errShow** display.

If no operand is specified, this command changes the way the error log appears in subsequent sessions. By default, the **errShow** command displays both the persistent and active log sessions. However, in future sessions you would have to use the **errShow** -**p** command to view persistent error messages.

The following example shows how to clear the persistent error log on the active CP.

Example

switch:admin> errclear -p
switch:admin>

Note

On a SilkWorm 12000 this means that both virtual switches need to be separately cleared. You need to connect to each virtual switch and perform this procedure. This does not apply to Silkworm 24000, 3900, 3850 or 3250, as none of these support multiple logical switches.

Setting the Error Save Level of a Switch

To control types of messages that are saved in the persistent error log:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the errsavelvlset command.

The following example shows how to enable saving of Warning, Error, Critical and Panic messages in the persistent error log.

Example

```
switch:admin> errsavelvlset 3
switch:admin>
```

By default, all messages of type Panic and Critical are saved in the persistent log. The argument **3** to the command specifies that all messages of severity level three or more critical should be saved. The severity levels are:

Critical	1
Error	2
Warning	3
Info	4
Debug	5

Changes to the error save level do not persist across switch reboots.

Displaying the Current Error Save Level Setting of a Switch

To find out the current value of the persistent error log save level for a switch:

- 1. Connect to the switch as the administrator.
- 2. Enter the errsavelvlshow command at the command line.

Resizing the Persistent Error Log

To resize the persistent error log of a switch to a new size:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the errnvlogsizeset command.

The following example shows how to resize the persistent error log to 1500 entries.

Example

```
switch:admin> errnvlogsizeset 1500
Persistent error log is resized to store 1500 entries
switch:admin>
```

Showing the Current Persistent (Non-Volatile) Error Log Configuration of a Switch

To show the current maximum size of the persistent error log:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the errnvlogsizeshow command.

Configuring the Syslog Daemon

The Fabric OS can be configured to use a UNIX style syslog daemon (syslogd) process to read system events and forward system messages to users and/or write the events to log files on a remote UNIX host system. Refer to "Configuring syslogd".

syslogd Overview

Fabric OS 4.x maintains an internal log of all error messages. The internal log buffers are limited in capacity; when the internal buffers are full, new messages overwrite old messages.

Fabric OS 4.x can be configured to send error log messages to a UNIX host system that supports syslogd. This host system can be configured to receive error/event messages from the switch and store them in files on the computer hard drive. This enables the storage of switch error log messages on a host system and overcomes the size limitations of the internal log buffers on the switch.

The syslogd is a process that runs on UNIX or LINUX systems that reads and logs messages to the system console, log files, other machines and users as specified by its configuration file. Refer to the manual pages and related documentation for your particular UNIX host system for more information on the syslogd process and its capabilities.

Note that the host system can be running UNIX, Linux or any other operating system as long as it supports standard syslogd functionality.

syslog Error Message Format

Below is an example of an error/event message received by the remote syslogd host from the SilkWorm 12000 switch.

```
Mar 5 13:56:25 [10.32.220.3.2.2] kernel: 0x24b (fabos): Switch: 0, Info HAM-REBOOT_REASON, 4, Switch reboot, reason: Unknown
```

The first two items are the event's date and time (as reported by the UNIX host machine where syslogd is running) and the IP address of the machine that generated the message. The word "kernel" in the message is the name of the syslogd facility used by the switch to send error log messages to the remote host. The rest of the message is similar to the error log message output from the **errshow** command line interface on the switch. The fields that are specific to the switch error log message are:

- ID of the task that generated the error (in the example this is **0x24b**)
- Name of the task that generated the error (in the example this is (fabos))
- Switch instance number (in the example this is **0**)
- Message severity level in word (in the example this is **Info**)
- The error message identifier consisting of the module name (in the example this is **HAM**) and the message name (in the example this is **REBOOT_REASON**)
- Numeric value of the message severity level defined by the switch (in the example this is 4)
- A descriptive text string (in the example, this is Switch reboot, reason: Unknown)

Message Classification

The syslogd messages are classified according to facility and priority (severity code). This enables a system administrator to take different actions depending on the error.

Fabric OS 4.x supports six message severity levels for error log messages. The following table provides a mapping between severity levels used by the switch and the syslogd severity levels supported by the UNIX system.

Fabric OS 4.x Message severity Levels/ Numerical Value	UNIX syslogd message severity levels/ Numerical Value
Panic (0)	Emergency (LOG_EMERG) (0)
Critical (1)	Alert (LOG_ALERT) (1)
Error (2)	Error (LOG_ERR) (3)
Warning (3)	Warning (LOG_WARNING) (4)
Info (4)	Info (LOG_INFO) (6)
Debug (5)	Debug (LOG_DEBUG) (7)

 Table 14-1
 Mapping Between Switch and Syslogd Severity Levels

Syslogd CLI Commands

Below is a list of commands that are related to the syslogd configuration. Please refer to the help pages of these commands for more details.

 Table 14-2
 Syslogd Configuration Commands

Command	Summary
syslogdipadd	Add the IP address of the remote syslogd host to the switch.
syslogdipremove	Remove the IP address of the remote syslogd daemon from the switch.
syslogdipshow	Show the list of configured syslogd IP addresses on the switch.
errshow	Display messages from the error log on the switch.

Configuring syslogd

You need to both configure the remote host and enable syslogd on the switch.

Configuring syslogd on the Remote Host

The syslogd configuration on the UNIX host provides the syslogd daemon with instructions on how to process different messages it receives from the switch. The following are example entries in the syslog configuration file, /etc/syslog.conf, on how to store switch error log messages received from the switch. Please refer to the syslog related manual pages on your UNIX system for the full documentation of the syslog configuration file.

The following entry in /etc/syslog.conf causes all messages from the switch of UNIX priority warning or higher (Basically, warning, error, critical and panic messages) to be stored in the file /var/adm/ SilkWorm.

kern.warning /var/adm/SilkWorm

The following entry in /etc/syslog.conf causes all messages (Debug, Info, Warning, Error, Critical, and Panic) from the SilkWorm switch to be stored in the file /var/adm/SilkWorm.

Example

kern.debug /var/adm/SilkWorm

The kern prefix identifies the use of the "kernel" syslogd facility to dispatch error log messages to the syslogd daemon. The placement of entries is critical to this function. Refer to "Configuring syslogd on the Remote Host" and "Enabling syslogd on the Switch" for instructions.

Enabling syslogd on the Switch

This procedure explains how to configure the switch to dispatch error log messages to a remote syslogd host.

To configure the switch to forward switch error log messages to a remote syslogd host the following steps must be performed:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **syslogdipadd** command using the following syntax:

switch:admin>syslogdipadd "IP address of the remote syslogd host"

3. Verify the IP address was entered correctly using the syslogdipshow command.

The following example shows how to configure the switch to dispatch error log messages to a remote syslogd host IP address is nnn.nnn.nnn

Example

```
switch:admin> syslogdipadd nnn.nnn.nnn
switch:admin> syslogdipshow
syslog.IP.address.1 nnn.nnn.nnn
```

Disabling syslogd on the Switch

To disable sending of error log messages to a previously enabled remote syslogd host do the following:

- 1. Connect to the switch as administrator.
- 2. At the command line enter the syslogdipremove command using the following syntax:

switch:admin>syslogdipremove "IP address of the remote syslogd host"

3. Verify the IP address was deleted using the syslogdipshow command

The following example shows how to disable sending of error log messages to a previously configured remote syslogd host whose IP address is nnn.nnn.nnn.

Example

switch:admin> syslogdipremove nnn.nnn.nnn

Switch Diagnostics

The switch status can be either Healthy/OK, Marginal/Warning, or Down. The overall status of a switch is determined by the status of several individual components within the switch. For more information on how the overall switch status is determined, refer to the **switchstatuspolicyset** command in the *Fabric OS Reference*.

Displaying the Switch Status

To display the overall status of a switch:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **switchstatusshow** command. The status of the switch should be Healthy/OK. If the status is Marginal/Warning or Down, the components contributing to this status are displayed.

Example

```
switch:admin> switchstatusshow
The overall switch status is Marginal/Warning
Contributing factors:
 * Switch Offline triggered the Marginal/Warning status
switch:admin>
```

Displaying Information About a Switch

To display switch information:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **switchshow** command. This command displays the following information for a switch:
 - switchname Displays the switch name.
 - **switchtype** Displays the switch model and firmware version numbers.
 - switchstate Displays the switch state: Online, Offline, Testing, or Faulty.
 - switchrole Displays the switch role: Principal, Subordinate, or Disabled.
 - switchdomain Displays the switch Domain ID.
 - **switchid** Displays the embedded port D_ID of the switch.
 - switchwwn Displays the switch World Wide Name.
 - switchbeacon Displays the switch beaconing state: either ON or OFF.

The **switchshow** command also displays the following information for ports on the specified switch:

- Module type The SFP type if a SFP is present.
- Port speed The speed of the Port (1G, 2G, N1, N2, or AN). The speed can be fixed, negotiated, or auto negotiated.
- Port state The port status.
- Comment Displays information about the port. This section may be blank or display WWN for F_port or E_port, Trunking state, upstream or downstream status.

The details displayed for each switch differ on different switch models. For more information refer to the **switchshow** command in the *Fabric OS Reference*.

Displaying the Uptime Of the Switch

To display the uptime for a switch:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **uptime** command. This command displays the length of time the system has been in operation, the total cumulative amount of up-time since the system was first powered-on, the date and time of the last reboot, and the reason for the last reboot. The reason for the last switch reboot is also recorded in the error log.

Example:

```
switch:admin> uptime
4:43am up 1 day, 12:32, 1 user, load average: 1.29, 1.31, 1.27
switch:admin>
```

3. Note the load average over the past 1, 5 and 15 minutes.

Port Diagnostics

There are two types of statistics you can view for a port:

- software statistics
- hardware statistics

Displaying Software Statistics for a Port

Software statistics for a port include information such as port state, number of interrupts, number of link failures, number of loss of synchronization warnings, and number of loss of signal warnings.

To display the software statistics for a port:

14

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **portshow** command using the following syntax:

portshow [slotnumber]/portnumber

where slotnumber and portnumber is the port location you want to view. Slotnumber is not necessary for a switch without slots.

A table of software statistics for the port is displayed.

Example

<pre>switch:admin> por portCFlags: 0x1 portFlags: 0x2004</pre>	ENABLED	SENT U_PORT LED			
portType: 4.2.0					
1 • • • • • • • • • •)ffline				
	lo_Light				
portScn: 0 portId: 612700					
portWwn: 20:27:		04.50			
portWwn of device					
None	(S) Connecce	5 u •			
Distance: normal					
Speed: N2Gbps					
Speed HEOSPS					
Interrupts:	1	Link failure:	0	Frjt:	0
Unknown:	0	Loss_of_sync:	0	Fbsy:	0
Lli:	1	Loss_of_sig:	1	-	
Proc_rqrd:	0	Protocol_err:	0		
Timed_out:	0	Invalid_word:	0		
Rx_flushed:	0	Invalid_crc:	0		
Tx_unavail:	0	Delim_err:	0		
Free_buffer:	0	Address_err:	0		
Overrun:	0	Lr_in:	0		
Suspended:	0	Lr_out:	0		
Parity_err:	0	Ols_in:	0		
2_parity_err:	0	Ols_out:	0		
CMI_bus_err:	0				
switch:admin>					

Note

For more information on the portshow command refer to the Fabric OS Reference.

Displaying Hardware Statistics for a Port

Hardware statistics for a port include information such as number of frames received, number of frames sent, number of encoding errors received, and number of class 2 and 3 frames received.

To display the hardware statistics for a port:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **portstatsshow** command using the following syntax:

portstatsshow [slotnumber]/portnumber

where slotnumber and portnumber is the port location you want to view. Slotnumber is not necessary for a switch without slots.

A table of software statistics for the port is displayed.

Example

switch:admin>	portstatsshow	3/7
stat_wtx	0	4-byte words transmitted
stat_wrx	0	4-byte words received
stat_ftx	0	Frames transmitted
stat_frx	0	Frames received
stat_c2_frx	0	Class 2 frames received
stat_c3_frx	0	Class 3 frames received
stat_lc_rx	0	Link control frames received
stat_mc_rx	0	Multicast frames received
stat_mc_to	0	Multicast timeouts
stat_mc_tx	0	Multicast frames transmitted
tim_rdy_pri	0	Time R_RDY high priority
tim_txcrd_z	0	Time BB_credit zero
er_enc_in	0	Encoding errors inside of frames
er_crc	0	Frames with CRC errors
er_trunc	0	Frames shorter than minimum
er_toolong	0	Frames longer than maximum
er_bad_eof	0	Frames with bad end-of-frame
er_enc_out	0	Encoding error outside of frames
er_disc_c3	0	Class 3 frames discarded
open	0	loop_open
transfer	0	loop_transfer
opened	0	FL_Port opened
starve_stop	0	tenancies stopped due to starvation
fl_tenancy	0	number of times FL has the tenancy
nl_tenancy	0	number of times NL has the tenancy
switch:admin>		

Note

For more information on the portstatsshow command, refer to the Fabric OS Reference

Displaying a Summary of Port Errors

This **porterrshow** command displays a summary of port errors for all the ports in a single switch.

To display a summary of port errors for a switch:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **porterrshow** command. The display contains one output line per port.

swit	ch:adm	nin> j	porte	rrsho	W									
	fra	ames	enc	crc	too	too	bad	enc	disc	link	loss	loss	frjt	fbsy
	tx	rx	in	err	shrt	long	eof	out	с3	fail	sync	sig		
sig=	=====	====:	=====	=====			=====	=====	=====		=====		=====	====
0:	22	24	0	0	0	0	0	1.5m		7	3	0	0	0
1:	22	24	0	0	0	0	0	1.2m	0	7	3	0	0	0
2:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:	149m	99m	0	0	0	0	0	448	0	7	б	0	0	0
5:	149m	99m	0	0	0	0	0	395	0	7	б	0	0	0
6:	147m	99m	0	0	0	0	0	706	0	7	б	0	0	0
7:	150m	99m	0	0	0	0	0	160	0	7	5	0	0	0
8:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
12:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
13:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
14:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
15:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
36:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
37:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
38:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
39:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40:	99m	146m	0	0	0	0	0	666	0	б	796	7	0	0
41:	99m	149m	0	0	0	0	0	15k	0	2	303	4	0	0
42:	99m	152m	0	0	0	0	0	665	0	2	221	5	0	0
43:	99m	147m	0	0	0	0	0	16k	0	2	144	4	0	0
44:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
45:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
46:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
47:	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The following table explains the types of errors counted:

Table 14-3	Error Summary	Description
	Life outlinary	Description

Error Type	Description	
frames tx	Frames transmitted.	
frames rx	Frames received.	
enc in	Encoding errors inside frames.	
crc err	Frames with CRC errors.	
too shrt	Frames shorter than minimum.	
too long	Frames longer than maximum.	
bad eof	Frames with bad end-of-frame delimiters.	
enc out	Encoding error outside of frames.	
disc c3	Class 3 frames discarded.	

link fail	Link failures (LF1 or LF2 states).
loss sync	Loss of synchronization.
loss sig	Loss of signal.
frjt	Frames rejected with F_RJT.
fbsy	Frames busied with F_BSY.

Table 14-3 Error Summary Description

Note

For more information on the porterrshow command refer to the Fabric OS Reference.

Hardware Diagnostics

For detailed hardware information, refer to your switch Hardware Reference Guide.

Monitoring the Fan Status

To display the fan status of a switch:

- 1. Connect to the switch as the administrator.
- 2. Enter the **fanshow** command at the command line. The possible values for fan status are:

OK - Fan is functioning correctly.

absent - Fan is not present.

below minimum - Fan is present but rotating too slowly or stopped.

Note

The number of fans and valid range for RPMs varies depending on the type of switch. For more information, refer to the specific hardware reference manual for your switch.

Monitoring the Power Supply Status

To display the power supply status of a switch:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the psshow command. The possible values for power supply status are:

OK - Power supply present and functioning correctly.

absent - Power supply not present.

faulty – Power supply present but faulty (no power cable, power switch turned off, fuse blown, or other internal error).

After the status line, a power supply identification line may be shown. If present, this line contains manufacture date, part numbers, serial numbers, and other identification information.

Note

The number of power supply units varies depending on the type of switch. For more information, refer to the particular hardware reference manual for your switch.

Monitoring the Temperature Status

To display the temperature status of a switch:

- 1. Connect to the switch as the administrator.
- 2. At the command line enter the **tempshow** command. This command displays current temperature readings from each of the five temperature sensors located on the main printed circuit board of the switch. The sensors are located, approximately, one in each corner and one at the center of the PCB.

Note

The number of temperature sensors, the location of the sensors, and the range of temperatures for safe operation varies depending on the type of switch. For more information, refer to the particular hardware reference manual for your switch.

Running Diagnostic Tests on the Switch Hardware

There are several diagnostic tests you can run on a switch. For more information, refer to the *Fabric OS Reference Guide*.

These tests are generally run during the POST, each time a switch is booted up (the actual tests run depends on part on the switch model):

- camtest
- centralMemoryTest
- cmemRetentionTest
- cmiTest
- crossPortTest
- minicycle
- portLoopbackTest
- sramRetentionTest
- statsTest
- spinSilk
- turboRamTest
- txdpath

Linux Root Capabilities

You can enable Linux root capabilities for diagnostic purposes. Enabling Linux root capabilities requires the Linux Root Enabling firmware, available from the switch provider. You cannot use the Linux Root Enabling firmware to perform any other switch functions.

Have the WWN and the output of the **licenseidshow** command of your switch available when you contact your switch support provider to enable Linux capabilities for diagnostics.

This chapter provides information on troubleshooting and the most common procedures used to diagnose and repair issues.

In this chapter:

- "About Troubleshooting"
- "Gathering Information for Technical Support"

The following specific scenarios are described to provide examples of Troubleshooting techniques:

- "Host Cannot See Target (Storage or Tape Devices)"
- "Fabric Segmentation"
- "Zoning Setup Issues"
- "Fabric Merge Conflicts Related to Zoning"
- "MQ-WRITE Error"
- "I2C bus Errors"
- "Device Login Issues"
- "Watchdog (Best Practices)"
- "Identifying Media-Related Issues"
- "Link Failure"
- "Marginal Links"
- "Switch Hangs when Connected to a Terminal Server"
- "Unexpected Output in the Serial PortLog"
- "Inaccurate Information in the Error Log"

About Troubleshooting

Troubleshooting should begin at the center of the SAN — the fabric. Because switches are located between the hosts and storage devices, and have visibility into both sides of the storage network, starting with them can help narrow the search path. After eliminating the possibility of a fault within the fabric, see if the problem is on the storage side or the host side, and continue a more detailed diagnosis from there. Using this approach can quickly pinpoint and isolate problems.

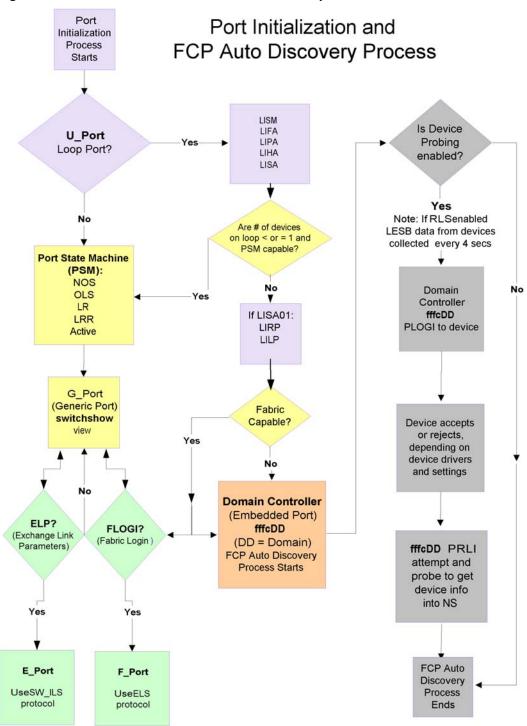
For example, if a host cannot see a storage device, run a switch command to see if the storage device is logically connected to the switch. If not, focus first on the storage side. Use storage diagnostic tools to better understand why it is not visible to the switch. Once the storage can be seen from the switch, if the host still cannot see the storage device, then there is still a problem between the host and switch.

Port Initialization and FCP Auto Discovery Process

Figure 15-1 displays the port initialization and the Fibre Channel Protocol (FCP) auto discovery process.

The steps in the port initialization process represent a protocol used to discover the type of connected device and establish the port type. The possible port types are as follows:

- U_Port Universal FC port. This port type is the base Fibre Channel port type and all unidentified, or uninitiated ports are listed as U_Ports.
- FL_Port Fabric Loop port. This port connects both public and private loop devices.
- G_Port Generic port. This port acts a transition port for non-loop fabric capable devices (E_port / F_port).
- E_Port Expansion port. This port type is assigned to ISL links.
- F_Port Fabric port. This port is assigned to fabric capable devices.


The Brocade FCP auto discovery process was designed to enable private storage devices that accept PRLI to communicate in a fabric.

If device probing is enabled, the embedded port PLOGI's and attempts a PRLI into the device to retrieve information to enter into the Name Server. This enables private devices that do not FLOGI but accept PRLI to be entered in the Name Server and receive full fabric citizenship. Private devices that accept PRLI represent a majority of storage targets. Private hosts require the QuickLoop feature, which is not available in Fabric OS v4.2.0.

A fabric capable device will implicitly register information with Name Server during a FLOGI. These devices will typically register information with the Name Server before querying for a device list. The embedded port will still PLOGI and attempt PRLI with these devices.

You can view the Name Server table in Web Tools by selecting the Name Server button in the Fabric Toolbar. Refer to the *Web Tools User's Guide* for more information.

15-2

Figure 15-1 Port Initialization and FCP Auto Discovery Process

Most Common Problem Areas

Table 15-1	Most Common	Problem Areas

Area	Investigate		
Fabric	Missing devices		
	Marginal links (unstable connections)		
	Incorrect zoning configurations		
	Incorrect switch configurations		
Storage Devices	Physical issues between switch and devices		
	Incorrect storage software configurations		
Hosts	Incorrect host bus adapter installation		
	Incorrect device driver installation		
	Incorrect device driver configuration		
Storage Management Applications	Incorrect installation and configuration of the storage devices that the software references. For example, if using a volume-management application, check for:		
	Incorrect volume installation		
	Incorrect volume configuration		

There are many tools available to help troubleshoot the SAN. The following table describes tools that can be used to troubleshoot specific areas.

Problem Area	Troubleshooting Tool
Fabric	Switch LEDs.
	Switch commands for diagnostics (command line).
	Web or GUI-based monitoring and management software tools.
	Real-time distributed fabric operating system with advanced diagnostics.
Storage Devices	Device LEDs
	Storage diagnostic tools
Hosts	Host adaptor LEDs
	Host operating system diagnostic tools
	Device driver diagnostic tools
Storage Management Applications	Application-specific tools and resources

 Table 15-2
 Troubleshooting Tools

Gathering Information for Technical Support

To aid in troubleshooting, gather as much of this information as possible prior to contacting the SAN technical support vendor.

- 1. Gather Switch Information:
 - a. Serial number (located on the chassis).
 - b. Worldwide name (obtain using licenseidshow or wwn commands)
 - c. Fabric OS version (obtain using version command)
 - d. Switch Configuration settings
- 2. Gather Host Information:
 - a. OS version and patch level
 - b. HBA type
 - c. HBA firmware version
 - d. HBA driver version
 - e. Configuration settings
- 3. Gather Storage Information:
 - a. Disk/tape type
 - b. Disk/tape firmware level
 - c. Controller type
 - d. Controller firmware level
 - e. Configuration settings
- 4. Storage Software (i.e. EMC Control Center, Veritas SPC, etc.)
- 5. SNMP management being used

Specific Scenarios

The following sections provides specific help with some of the most common SAN problems.

Host Cannot See Target (Storage or Tape Devices)

When a host cannot "see" its disks, the best way to troubleshoot the problem is to start in the middle half of the data path, figure out if the problem is "above" or "below" the data path, and keep dividing the suspect path in half until the problem is identified.

There are a few areas to check in the process of elimination:

- "Check the Logical Connection"
- "Check the Simple Name Server (SNS)"

- "Check for Zoning Discrepancies"
- Check Device Communication.

Check the Logical Connection

- 1. Enter the **switchShow** command.
- 2. Review the output and determine if the device is logically connected to the switch:
 - A device that *is* logically connected to the switch will be registered as an NX_Port.
 - A device that is *not* logically connected to the switch will be registered as something *besides* an NX_Port.

- a. If the missing device is logically connected, move on to "Check the Simple Name Server (SNS)".
- b. If the missing device is *not* logically connected, eliminate the host and everything on that side of the data path from the suspect list. This includes all aspects of the host's OS, the HBA driver settings and binaries, the HBA Basic Input Output System (BIOS) settings, the HBA SFP, the cable going from the switch to the host, the SFP on the switch side of that cable, and all switch settings related to the host. Move on to "Link Initialization Failure (Loop)".

Check the Simple Name Server (SNS)

1. Enter the nsShow command on the switch to which the device is attached.

```
The Local Name Server has 9 entries {
                                       NodeName
Type Pid COS
                  PortName
                                                           TTL(sec)
    021a00; 2,3;20:00:00:e0:69:f0:07:c6;10:00:00:e0:69:f0:07:c6; 895
*N
    Fabric Port Name: 20:0a:00:60:69:10:8d:fd
               3;21:00:00:20:37:d9:77:96;20:00:00:20:37:d9:77:96; na
NL
    051edc;
    FC4s: FCP [SEAGATE ST318304FC
                                      0005]
   Fabric Port Name: 20:0e:00:60:69:10:9b:5b
NL 051ee0;
               3;21:00:00:20:37:d9:73:0f;20:00:00:20:37:d9:73:0f; na
    FC4s: FCP [SEAGATE ST318304FC
                                      0005]
    Fabric Port Name: 20:0e:00:60:69:10:9b:5b
               3;21:00:00:20:37:d9:76:b3;20:00:00:20:37:d9:76:b3; na
NT.
    051ee1;
    FC4s: FCP [SEAGATE ST318304FC
                                      00051
    Fabric Port Name: 20:0e:00:60:69:10:9b:5b
                 3;21:00:00:20:37:d9:77:5a;20:00:00:20:37:d9:77:5a; na
NL 051ee2;
    FC4s: FCP [SEAGATE ST318304FC
                                      00051
    Fabric Port Name: 20:0e:00:60:69:10:9b:5b
    051ee4; 3;21:00:00:20:37:d9:74:d7;20:00:00:20:37:d9:74:d7; na
 NL
   FC4s: FCP [SEAGATE ST318304FC
                                     00051
    Fabric Port Name: 20:0e:00:60:69:10:9b:5b
    051ee8;
               3;21:00:00:20:37:d9:6f:eb;20:00:00:20:37:d9:6f:eb; na
 NL
   FC4s: FCP [SEAGATE ST318304FC
                                      00051
   Fabric Port Name: 20:0e:00:60:69:10:9b:5b
                3;21:00:00:20:37:d9:77:45;20:00:00:20:37:d9:77:45; na
 NL
    051eef;
    FC4s: FCP [SEAGATE ST318304FC
                                      0005]
    Fabric Port Name: 20:0e:00:60:69:10:9b:5b
     051£00;
              2,3;50:06:04:82:bc:01:9a:0c;50:06:04:82:bc:01:9a:0c; na
 Ν
    FC4s: FCP [EMC
                      SYMMETRIX
                                      5267]
    Fabric Port Name: 20:0f:00:60:69:10:9b:5b
```

- 2. Look for the device in the list of the Simple Name Server. The SNS lists all of the nodes connected to that switch, which allows a user to determine if a particular node is accessible on the network.
 - If the device is *not* present in the SNS, the search is narrowed to the virtual SAN cable; the problem is between the storage device and the switch. This is not a host problem, and may indicate a timeout or communication problem between the edge device(s) and the Name Server. Move on to step 3.
 - If the device *is* listed in the SNS, the search is narrowed; the problem is between the storage device and the host. There may be a zoning mismatch or a host/storage issue. Refer to "Check for Zoning Discrepancies".
- 3. Check the edge device documentation to determine if there is a timeout setting or parameter that may be re-configured. If this does not solve the communication problem, contact the support organization for the product that appears to be timing out.

Check for Zoning Discrepancies

To determine if zoning might be causing a communication problem between devices:

1. Enter the cfgacrshow command to determine if zoning is enabled.

If zoning is enabled, it is possible that the problem is being caused by a zoning conflict. (i.e. two devices in different zones cannot see each other).

Example

```
switch:admin> cfgactvshow
Effective configuration:
cfg: USA_cfg
zone: Blue_zone
1,1
21:00:00:20:37:0c:76:8c
21:00:00:20:37:0c:76:22
21:00:00:20:37:0c:76:22
21:00:00:20:37:0c:76:28
zone: Red_zone
1,0
21:00:00:20:37:0c:76:85
21:00:00:20:37:0c:71:df
```

- 2. Confirm that the specific edge devices that need to communicate with each other are in the same zone.
 - If they are, zoning is not causing the communication problem.
 - If they are not, and zoning is enabled, continue to step 3
- 3. Resolve zoning conflicts by putting the devices into the same zoning configuration.

Refer to "Correcting Zone Merge Conflicts (Basic Procedure)".

Fabric Segmentation

Possible Causes

Fabric Segmentation is generally caused by:

- Incompatible fabric parameters. Refer to "Restoring a Segmented Fabric"
- The Core PID is not set. The Core PID is part of fabric parameters. Refer to "Selecting a Switch PID Format".
- Incompatible zoning configuration. Refer to "Fabric Merge Conflicts Related to Zoning".
- Domain ID conflict. Refer to "Reconcile a Domain ID Conflict".
- A switch in a secure fabric is not running Secure Fabric OS. Refer the *Secure Fabric OS User's Guide*.

About Fabric Parameters

There are a number of settings that control the overall behavior and operation of the fabric. Some of these values, such as the domain ID, are assigned automatically by the fabric and may differ from one switch to another in the fabric. Other parameters, such as the BB credit, can be changed for specific applications or operating environments, but must be the same among all switches to allow the formation of a fabric.

Mandatory Identical Settings

The following fabric parameters must be identical for a fabric to merge:

- R_A_TOV
- E_D_TOV
- Data Field Size
- Sequence Level Switching
- Disable Device Probing
- Suppress Class F Traffic
- VC Encoded Address Mode
- Per-frame Route Priority
- Long Distance Fabric
- BB Credit
- Core PID

Domain ID Conflicts

A domain ID conflict can occur if a switch that is in the online state is added to a fabric, and the joining switch domain ID conflicts with the domain ID of a switch in the fabric. Normally, domain IDs are automatically assigned; however, once a switch is online, the domain ID cannot change, as it would change the port addressing and potentially disrupt critical I/O.

Restoring a Segmented Fabric

The following procedure describes how to check for inconsistent fabric parameters that cause segmentation. For information on zoning configuration incompatibility, refer to "Fabric Merge Conflicts Related to Zoning".

Reconcile Fabric Parameters Individually

The following procedure describes how to edit incompatible fabric parameters between fabrics by hand. To reconcile an entire configuration at once, refer to "Restore Fabric Parameters Through ConfigUpload".

- 1. Connect to one of the segmented fabrics as an administrator.
- 2. Enter the **configshow** command.
- 3. Open another telnet session and connect to the next fabric as an administrator.
- 4. Enter the **configshow** command.
- 5. Compare the two fabric configurations line by line and look for differences. Do this by comparing the two telnet windows, or by printing the **configshow** output.
- 6. Connect to the segmented switch once the discrepancy is identified.
- 7. Disable the switch by entering switchdisable.
- 8. Enter the **configure** command to edit the fabric parameters for the segmented switch.

Refer to the Fabric OS Reference Guide for more detailed information.

9. Enable the switch by entering the switchenable command.

Restore Fabric Parameters Through ConfigUpload

The following procedure describes how to restore a segmented fabric by uploading the entire "correct" configuration, then downloading that configuration to the segmented switch. This reconciles any discrepancy in the fabric parameters and allows the segmented switch to rejoin the main fabric. To edit and correct a configuration by hand, refer to "Reconcile Fabric Parameters Individually".

- 1. Verify that the FTP service is running on the host workstation.
- 2. Connect to a switch in the known working fabric as the administrator.
- 3. Run the configupload command.
- 4. Name the text file something relevant and save it to a host.
- 5. Open a new telnet session and connect to the segmented switch as the administrator.
- 6. Shut down the switch by entering the switchdisable command.
- 7. Enter **configdownload** at the command line. The command becomes interactive and prompts appear for the required information.

8. Select "y" at the *Do you want to continue* [y/n] prompt.

A download complete message displays.

- 9. (Optional) Use the **configure** command to preset the domain ID (as opposed to letting it be chosen at random).
- 10. Reboot the switch by entering the reboot command.
- 11. Repeat this procedure on all switches that have incorrect fabric parameters.

Reconcile a Domain ID Conflict

When a domain ID conflict appears, the conflict is only reported at the point where the two fabrics are physically connected. However, there may be several conflicting domain IDs, which will appear as soon as the initial conflict is resolved. Repeat the process described below until all domain ID conflicts are resolved.

- 1. Enter the switchshow command on a switch from one of the fabrics.
- 2. Open a separate telnet window.
- 3. Enter the switchshow command on a switch from the second fabric.
- 4. Compare the **switchshow** output from the two fabrics. Note the number of domain ID conflicts; there may be several duplicate domain IDs that will need to be changed.
- 5. Chose the fabric on which to change the duplicate domain ID; connect to the conflicting switch in that fabric.
- 6. Enter the switchdisable command.
- 7. Enter the switchenable command.

This will enable the joining switch to obtain a new domain ID as part of the process of coming online. The fabric principal switch will allocate the next available domain ID to the new switch during this process.

8. Repeat steps 5 - 7 if additional switches have conflicting domain IDs.

Zoning Setup Issues

Refer to the *Zoning User's Guide* for information about setting up zoning and preventing segmentation due to zoning. The following tables summarize the zoning related commands.

Command	Function
switchshow	Displays currently enabled configuration and any E_port segmentations due to zone conflicts.
licenseshow	Displays current license keys and associated (licensed) products.

Table 15-3 Zoning Related Commands

 Table 15-4
 Zone Specific Commands

Command	Function
cfgcreate	Use to create a zone configuration.
cfgshow	Displays zoning configuration.
zoneadd	Use to add a member to an existing zone.
zoneshow	Displays zone information.
zonecreate	Use to create a zone. Before a zone becomes active, the cfgSave and cfgenable commands must be used.
alicreate	Use to create a zone alias.
alidelete	Use to delete a zone alias.
zonehelp	Displays help information for zone commands.

Fabric Merge Conflicts Related to Zoning

To prevent fabric segmentation, refer to the *Zoning User's Guide* for setup information. In addition, fabric merges can be tested prior to merging using Fabric Manager. Refer to the *Fabric Manager User's Guide*.

There are three types of zone configuration discrepancies that can cause segmentation, described in Table 15-5.

Conflict Cause	Description
Configuration mismatch	Occurs when Zoning is enabled in both fabrics and the zone configurations that are enabled are different in each fabric.
Type mismatch	Occurs when the name of a zone object in one fabric is also used for a different type of zone object in the other fabric.
Content mismatch	Occurs when the definition of a zone object in one fabric is different from the definition of a zone object with the same name in the other fabric.

 Table 15-5
 Types of Zone Discrepancies

Correcting Zone Merge Conflicts (Basic Procedure)

Caution

This is a disruptive procedure. To correct a merge conflict without disrupting the fabric, refer to "Correcting Zone Merge Conflicts (Detailed Procedure)" or the *Zoning User's Guide*.

To quickly correct a fabric merge problem due to incompatible zones, perform the following steps:

- 1. Determine which switch(es) have the incorrect configuration; connect to that switch as the administrator.
- 2. Enter the cfgDisable command.
- 3. Enter the cfgClear command.

Caution

Be careful in using the **cfgclear** command because you can inadvertently delete the Zone configuration in the fabric. Make sure you are deleting the "incorrect" configuration.

- 4. Enter the **switchdisable** command.
- Enter the switchenable command. This automatically evokes the cfgSave command. The two fabrics will be remerged.
- 6. Refer to "Correcting Zone Merge Conflicts (Detailed Procedure)" for more detailed troubleshooting instructions.

Correcting Zone Merge Conflicts (Detailed Procedure)

For more information regarding Zoning, refer to the Zoning User's Guide.

For detailed troubleshooting of zone merge issues

- 1. Verify Fabric Merge Problem
- 2. Edit Zone Config Members
- 3. Reorder the Zone Member List

Verify Fabric Merge Problem

- 1. Enter the **swithshow** command at the command line to validate that the segmentation is due to a zone issue.
- 2. Refer to "Zoning Setup Issues" to view the different types of zone discrepancies.

Edit Zone Config Members

- 1. Connect to one of the segmented Fabrics as an administrator.
- 2. Enter the **cfgshow** command.

Typing the "*" symbol after the command displays list of all config names.

- 3. Print the output from the cfgShow command.
- 4. Start another Telnet session and connect to the next fabric as an administrator.
- 5. Run the cfgShow command.
- 6. Print the output from the cfgShow command.
- 7. Compare the two fabric zone configurations line by line and look for incompatible configuration. Refer to "Fabric Merge Conflicts Related to Zoning" for definitions.
- 8. Connect to one of the fabrics.
- 9. Run zone configure edit commands to edit the fabric zone configuration for the segmented switch. Refer to the *Zoning User's Guide* for specific commands.

Reorder the Zone Member List

If the zoneset members between two switches are not listed in the same order in both configurations, the configurations are considered a mismatch; this results in the switches being segmented in the fabric. For example:

[cfg1 = z1; z2] is different from [cfg1 = z2; z1], even though the members of the configuration are the same.

One simple approach to making sure that the zoneset members are in the same order is to keep the members in alphabetical order.

- 1. Use the output from the cfgshow for both switches.
- 2. Compare the order that the zone members are listed. Members must be listed in the same order.
- 3. Rearrange zone members so that the configuration for both switches is the same. Arrange zone members in alphabetical order, if possible.
- 4. Continue to the next step if all zone members appear to be the same, and are displayed in the same order.

MQ-WRITE Error

An MQ error is a message queue error. Identify an MQ error message by looking for the two letters M and Q in the error message.

Example

```
<switch number> Critical MQ-QREAD, 1, mqRead, queue = <?>, queue ID = <queue ID#>, tmsg = ?>, errno = <error number>
```

MQ errors can result in devices dropping from the Simple Name Server or can prevent a switch from joining the fabric. MQ errors are rare and difficult to troubleshoot, and it is suggested that they be resolved by working with the switch supplier. When MQ errors are encountered, execute the **supportShow** command to capture debug information about the switch. Then forward the **supportShow** data to the switch supplier for further investigation.

I2C bus Errors

i2C bus errors indicate defective hardware, and the specific item is listed in the error message. Refer to the *Diagnostics and Error Messages Guide* for information specific to the error that was received. Specifically, some CPT and Environmental Monitor (EM) messages contain i2C-related information.

If the i2C message does not indicate the specific hardware that may be failing, begin debugging the hardware, as this is the most likely cause. The next sections provide procedures for debugging the hardware.

Check Fan Components

- 1. Connect to the switch as a user.
- 2. Enter fanshow at the command line.
- 3. Check the Fan status and speed output.

If any of the fan speeds display abnormal RPMs, replace the fan FRU.

Check the Switch Temperature

- 1. Connect to the switch as a user.
- 2. Enter tempshow at the command line.
- 3. Check the temperature output.

Look for indications of high or low temperatures.

Check the Power Supply

- 1. Connect to the switch as a user.
- 2. Enter the **psshow** command at the command line.
- 3. Check the power supply status. Refer to the *Fabric OS Reference Guide* or the appropriate *Hardware Reference* for details regarding the power supply status.

If any of the power supplies show a status other than OK, consider replacing the power supply as soon as possible.

- 1. Connect to the switch as a user.
- 2. Enter **sensorshow** at the command line. Refer to the *Fabric OS Reference Guide* for details regarding the sensor numbers.
- 3. Check the temperature output.

Look for indications of high or low temperatures.

4. Check the Fan speed output.

If any of the fan speeds display abnormal RPMs, replace the fan FRU.

5. Check the Power Supply status.

If any of the power supplies show a status other than OK, consider replacing the power supply as soon as possible.

Device Login Issues

In narrowing down problems with device logins, use the following commands:

- 1. Connect to the switch.
- 2. Enter the switchShow command. Check for correct logins.

```
sw094135:root> switchshow
switchName:
                        sw094135
switchType:
                         26.1
switchState: Online
switchMode: Native
switchRole: Principal
switchDomain: 126
switchId: fffc7e
switchWwn:
                         10:00:00:05:1e:34:00:69
zoning:
                         ON (cfg_em)
switchBeacon: OFF
Port Media Speed State
 _____
       id N1 Online E-Port 10:00:00:60:69:11:f9:fc "2800_116"
   0
   1
          id 1G Online E-Port 10:00:00:60:69:11:f9:fc "2800_116"
   2
          id N2 No_Light
   3
            id 2G No_Light
                   N2 Online E-Port (Trunk port, master is Port
N2 Online E-Port 10:00:00:05:1e:34:00:8b "Daz
   4
            id
                                                                                                         5)
                             Online
   5
            id
                                             E-Port 10:00:00:05:1e:34:00:8b "Dazz125"
 (downstream) (Trunk master)
           id N2 No_Light
   б
            id N2 No_Light
   7
   8
           id N1 Online
                                             L-Port 4 public, 1 private, 1 phantom
   9
           id N2 No_Light
  10
          id N2 Online G-Port
          id N2 Online F-Port 10:00:00:01:c9:28:c7:01
  11
  12
            id N1 Online L-Port 4 public, 1 private, 1 phantom
                             No_Module
  13
             ___
                     N2
            id
                     N2 Online E-Port (Trunk port, master is Port 15)
N2 Online E-Port 10:00:00:60:69:90:03:17 "TERM_113"
  14
            id
 15
(downstream)(Trunk master)
12:24:37.403 LOOP loopscn 2 LIP 8002
12:24:37.403 PORT
                                     debug 2
                                                                  aaaaaaa,00140004,00000004,00000000
12:24:37.702 LOOP
                                     loopscn 2 TMO 2
12:24:37.702 INTR
                                    pstate 2 LF2
12:24:37.703 INTR
                                     pstate 2 OL2
12:24:37.703 INTR
                                     pstate 2 LR3
12:24:37.703
                                     pstate 2
                      INTR
                                                           AC

        scn
        2
        11
        00000000,0000000,00000000

        scn
        2
        1
        00000000,0000000,00000000

                                                     2 11 0000000,0000000,0000002
12:24:37.703 PORT

      12:21:37.842
      PORT
      scn
      2
      1
      0000000,0000000,00000001

      12:24:37.842
      PORT
      Tx
      2
      164
      02fffffd,00fffffd,0177ffff,10000000

      12:24:37.844
      PORT
      Tx
      2
      164
      02fffffd,00fffffd,0191ffff,10000000

      12:24:43.843
      PORT
      Tx
      2
      164
      02fffffd,00fffffd,0191ffff,10000000

      12:24:49.843
      PORT
      Tx
      2
      164
      02fffffd,00fffffd,0192ffff,10000000

      12:24:55.843
      PORT
      Tx
      2
      164
      02fffffd,00fffffd,01a3ffff,10000000

      12:25:01.834
      PORT
      Tx
      2
      164
      02fffffd,00fffffd,01afffff,10000000

      12:25:07.834
      PORT
      Tx
      2
      164
      02fffffd,00fffffd,01afffff,10000000

      12:25:07.834
      PORT
      Tx
      2
      164
      02fffffd,00fffffd,01afffff,10000000

Dazz125:root>
```

3. Enter the portconfigShow command to see how the port is configured.

sw094135:root> po	rtci	fgsl	now													
Ports of Slot 0	0	1	2	3	4	5	б	7	8	9	10	11	12	13	14	15
	+	+	+	+ +		+	+ +	+ +	+	+	+	+ +		+	+	+
Speed	AN	1G	AN	2G	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN
Trunk Port	ON	ON		ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON
Long Distance				••							• •					
VC Link Init				••							• •					
Locked L_Port												••				
Locked G_Port												••				
Disabled E_Port				••							• •					
ISL R_RDY Mode												••				
Persistent Disabl	e															
Locked Loop HD				••							• •					
	whe	ere	AN	Aut	oNego	otia	ate	, .	. : OFF	, ?'	?:II	IAVV	JID.			
р			LI	ч:гС).5											

- 4. Enter the **portErrShow** command. Check for errors that may cause login problems.
 - A high number of errors relative to the frames transmitted and frame received may indicate a marginal link. Refer to "Marginal Links".
 - A steadily increasing number of errors may indicate a problem. Track errors by sampling the port errors every five or ten seconds.

Example

SW094			-	rrsho		-	ام م ما			1 4 1	1	1	£ L	flame
		ames	enc			too							IrJL	rpsà
	tx	rx	ın	err	shrt	long	eoi	out	C3	fail	sync	sig		
_	======		=====	=====			=====	=====	=====		=====			
0:	38	75	0	0	0	0	0	0	0	9	11	0	0	0
1:	110	73	0	0	0	0	0	0	0	9	11	0	0	0
2:	0	0	0	0	0	0	0	38	0	4	0	2	0	0
3:	0	0	0	0	0	0	0	0	0	4	1	2	0	0
4:	59m	102	0	0	0	0	0	0	0	4	0	0	0	0
5:	59m	103	0	0	0	0	0	0	0	3	0	0	0	0
6:	0	0	0	0	0	0	0	21	0	3	0	0	0	0
7:	0	0	0	0	0	0	0	58	0	3	0	0	0	0
8:	81	19k	0	0	0	0	0	3.Om	0	5	43	0	0	0
9:	0	0	0	0	0	0	0	29	0	3	0	0	0	0
10:	12m	68m	0	0	0	0	0	13	43n	n 8	1	1	0	0
11:	30m	33m	0	0	0	0	0	0	0	8	1	1	0	0
12:	89	25k	0	0	0	0	0	2.9m	0	7	43	0	0	0
13:	0	0	0	0	0	0	0	0	0	3	0	0	0	0
14:	29m	82m	0	0	0	0	0	0	1.2n	n 4	1	1	0	0
15:	29m	81m	0	0	0	0	0	0	1.ln	n 4	1	1	0	0

5. Enter the **portflagsshow** command to see how a port has logged in and where a login failed, if a failure occurred.

sw0	94135:root:	> portflags	show						
Port	SNMP	Physical	Flags						
0:	Online	In_Sync	PRESENT	ACTIVE	E_PORT	G_PORT	U_PORT	LOGICAL_ONLINE	LOGIN
LED									
1:	Online	In_Sync	PRESENT	ACTIVE	E_PORT	G_PORT	U_PORT	LOGICAL_ONLINE	LOGIN
LED									
2:	Offline	No_Light	PRESENT	U_PORT	LED				
3:	Offline	No_Light	PRESENT	U_PORT	LED				
4:	Online	In_Sync	PRESENT	ACTIVE	E_PORT	G_PORT	U_PORT	LOGICAL_ONLINE	LOGIN
LED									
5:	Online	In_Sync	PRESENT	ACTIVE	E_PORT	G_PORT	U_PORT	LOGICAL_ONLINE	LOGIN
LED									
6:	Offline	No_Light	PRESENT	U_PORT	LED				
		No_Light	PRESENT	U_PORT	LED				
8:	Online	In_Sync	PRESENT	ACTIVE	F_PORT	L_PORT	U_PORT	LOGICAL_ONLINE	LOGIN
NOEL	P LED ACCEI	PT							
		No_Light	PRESENT	U_PORT	LED				
10:	Online	In_Sync	PRESENT	ACTIVE	G_PORT	U_PORT	LOGIN I	LED	
11:	Online	In_Sync	PRESENT	ACTIVE	F_PORT	G_PORT	U_PORT	LOGICAL_ONLINE	LOGIN
NOEL	P LED ACCEI	PT							
12:	Online	In_Sync	PRESENT	ACTIVE	F_PORT	L_PORT	U_PORT	LOGICAL_ONLINE	LOGIN
NOEL	P LED ACCEI	PT							
13:	Offline	No_Module	PRESENT	U_PORT	LED				
14:	Online	In_Sync	PRESENT	ACTIVE	E_PORT	G_PORT	U_PORT	LOGICAL_ONLINE	LOGIN
LED									
15:	Online	In_Sync	PRESENT	ACTIVE	E_PORT	G_PORT	U_PORT	LOGICAL_ONLINE	LOGIN
LED									

6. Enter the **portlogdumpport** *portid* command.

View the device to switch communication.

sw094135:root> portlogdumpport 10								
time	task	event p	port	cmd	args			
12:38:21.590	SPEE	sn	10	ws	0000000,0000000,0000000			
12:38:21.591	SPEE	sn	10	WS	000000ee,0000000,0000000			
12:38:21.611	SPEE	sn	10	WS	0000001,0000000,0000000			
12:38:21.871	SPEE	sn	10	NC	0000002,0000000,0000001			
12:38:21.872	LOOP	loopscn	10	LIP	8002			
12:38:22.171	LOOP	loopscn	10	TMO	2			
12:38:22.171	INTR	pstate	10	LF2				
12:38:22.172	INTR	pstate	10	OL2				
12:38:22.172	INTR	pstate	10	LR3				
12:38:22.172	INTR	pstate	10	AC				
12:38:22.172	PORT	scn	10	11	0000000,0000000,0000002			
12:38:22.311	PORT	scn	10	1	0000000,0000000,0000001			
12:38:22.311	PORT	debug	10		00000001,00654320,00000001,00000000			
12:38:22.311	PORT	debug	10		00000001,00654320,00000002,00000000			
12:38:22.311	PORT	debug	10		00000001,00654320,00000003,00000000			
12:38:22.313	PORT	Tx	10	164	02fffffd,00fffffd,025effff,10000000			
12:38:22.314	PORT	debug	10		00000001,00654320,00000003,00000000	* 7		
12:38:28.312	PORT	Tx	10	164	02fffffd,00fffffd,028fffff,10000000			
12:38:34.312	PORT	Tx	10	164	02fffffd,00fffffd,0293ffff,10000000			
12:38:40.312	PORT	Tx	10	164	02fffffd,00fffffd,0299ffff,10000000			
12:38:46.312	PORT	Tx	10	164	02fffffd,00fffffd,029bffff,10000000			
12:38:52.312	PORT	Tx	10	164	02fffffd,00fffffd,029dffff,10000000			
12:38:58.312	PORT	Tx	10	164	02fffffd,00fffffd,02acffff,10000000			
12:39:04.322	INTR	pstate	10	LR1				
12:39:04.323	INTR	pstate	10	LR3				
12:39:04.323	INTR	pstate	10	AC				
12:39:04.323	PORT	scn	10	11	0000000,0000000,0000002			
sw094135:root	>							

Refer to "Troubleshooting Using the Port Logs" on page 16-1 for information on decoding a **portlogdump**.

Watchdog (Best Practices)

Watchdog is a subset of the Kernel Error Reporting Software; it is a feature that reports unexpected and fatal errors when a switch dies. The Watchdog feature ensures that the switch will not send corrupted data when the software is not properly performing its function.

The ASIC has a Watchdog register that needs to be probed by the Fabric OS once every two seconds. If the ASIC detects that the Fabric OS is hung, the ASIC will wait for an additional two seconds before resetting the CPU. The switch will always reboot or fail over when a Watchdog error occurs.

Actions

In the event of a Watchdog error, perform the following steps:

- Collect the output of the supportshow command and contact Technical Support.
- See specific error message for additional actions. Refer to "Kernel Software Watchdog Related Errors".

Kernel Software Watchdog Related Errors

kSWD-APP_NOT_REFRESH_ERR

Message	
	Critical kSWD-APP_NOT_REFRESH_ERR, 1, (kSWD)Application with pid < <i>PID number></i> not refreshing watchdog.
Explanation	A critical kernel software error occurred in the Watch Dog subsystem. An kernel application is not able to refresh. Refer to the specified PID number to find out which application is failing. The switch will reboot (on single-CP switches) or fail-over (on dual-CP switches).
Action	Run the savecore command to find if a Core File was created. If a Core File is found, select the <i>FTP the file</i> option.
	Copy the error message and contact customer support.
Severity	Critical
	kSWD-kSWD_GENERIC_ERR_CRITICAL
Message	
	Critical kSWD-kSWD_GENERIC_ERR_CRITICAL, 1, kSWD: <error string=""></error>
Explanation	A critical application error was reported in the Watch Dog subsystem. Refer to the string at the end of the error message for specific information. The switch will reboot (on single-CP switches) or fail-over (on dual-CP switches).
A ation	
Action	Run the savecore command to find out whether a Core File was created. If a Core File is found, select the <i>FTP the file</i> option.
Action	

Identifying Media-Related Issues

Use the following section to narrow down media-related issues in the fabric.

Component Tests Overview

Hardware diagnostics available on switches can be classified into two different types of tests:

• Structural tests - do basic tests of the switch circuit. When structural tests fail, replace the mainboard.

15

• Functional tests - verify the intended operational behavior of the switch by running frames through ports or bypass circuitry.

Test Name	Operands	Checks
crossporttest	[-nframes count] [-lb_mode mode][-spd_mode mode] [-gbic_mode mode] [-norestore mode] [-ports itemlist]	Functional test of port external transmit and receive path. The crossport is set to loopback using an external cable by default. However, this command can be used to check internal components by setting the <i>lb</i> operand to 5.
fporttest	[- nframes count] [- ports itemlist] [- seed payload_pattern] [- width pattern_width] [- size pattern_size]	Tests component to / from HBA. Used to test online F_Port devices, N_Port devices and SFPs/GBICs.
loopporttest	[-nframes count] [-ports itemlist][-seed payload_pattern] [-width pattern_width]	Only tests components attached to switch that are on a FC arbitrated loop.
spinfab	[nMillionFrames [, ePortBeg [, ePortEnd [, setFail]]]]	Tests components to/from a neighbor switch, such as ISLs and SFPs/GBICs between switches.

 Table 15-6
 Component Test Descriptions

Check Switch Components

Cursory Debugging of Media Components

The following procedure describes basic steps that can help to narrow down faulty media.

- 1. Connect to the switch as the administrator.
- 2. Enter switchshow at the command line.

Look for a known good portstate online or insync.

3. (Optional) Enter version at the command line.

The version can be used to check the known buglist in the appropriate Release Notes.

4. Enter **porterrshow** at the command line.

A error summary of all ports is displayed.

- 5. Glance over the port statistics.
 - Most numbers should be small. An excessively large number (such as one over 100,000) could indicate a bad transceiver.
 - Also check for rapidly rising error counts.

Tip: The LLI_errs (Low Level Interrupt_errors) are the sum of the port's 8 statistical error counters: ENC_in, CRC_err, TruncFrm, FrmTooLong, BadEOF, Enc_out, BadOrdSet, DiscC3. Check **porterrshow** output to determine what generated LLI_errs.

- 6. (Optional) Run tests if you still suspect a media problem.
 - To test components to and from a neighbor switch, refer to "Test Cascaded Switch ISL Links".
 - To test a ports external transmit and receive path, refer to "Check Port's External Transmit and Receive Path".
 - To test the internal components of a suspect switch, refer to "Test a Switches Internal Components".
 - To test the components between a switch and a hub (and back), refer to "Test Components To and From the HBA".
 - To check all switches attached components (on an FC loop), refer to "Check All Switch Components Between Main Board, SFP, and Fibre Cable".
 - To check all of a port's attached components (on an FC loop), refer to "Check Port's External Transmit and Receive Path".
 - To view a list of additional component tests, refer to "Additional Component Tests".

Test Cascaded Switch ISL Links

To tests components to/from a neighbor switch:

- 1. Connect to the switch as the administrator.
- 2. Enter the **spinfab** command with the following operands (refer to the *Fabric OS Reference Guide* for more details):
 - [-nmegs count] Specify the number of frames to send in millions.
 - [**-ports** *list*] (Optional) Specify a list of user ports to test.
 - [-setfail mode] Specify a value 1 to mark failing ports as BAD, specify a value of 0 to not mark failed ports as bad.
 - [-domain value] (Optional) Specify a specific remote domain to which the switch is connected.

Example

```
switch:admin> setdbg "DIAG", 0
switch:admin> spinfab 3,0,4
spinFab running...
spinFab: Completed 3 megs, status: passed.
       port 0 test status: 0x00000000 -- passed.
       port 1 test status: 0x00000000 -- passed.
       port 2 test status: 0x00000000 -- passed.
       port 3 test status: 0x00000000 -- passed.
       port 4 test status: 0x02000000 -- SKIPPED!
switch:admin> setdbg "DIAG", 2
switch:admin> spinfab 3,0,3
spinFab running...
port 1 Rx 1 million frames.
port 0 Rx 1 million frames.
port 2 Rx 1 million frames.
port.
     3 Rx
           1 million frames.
port
     1 Rx
           2 million frames.
port 0 Rx 2 million frames.
port 2 Rx 2 million frames.
port 3 Rx 2 million frames.
port 1 Rx 3 million frames.
port 0 Rx 3 million frames.
port 2 Rx 3 million frames.
port 3 Rx 3 million frames.
spinFab: Completed 3 megs, status: passed.
       port 0 test status: 0x00000000 -- passed.
       port 1 test status: 0x00000000 -- passed.
       port 2 test status: 0x00000000 -- passed.
       port 3 test status: 0x00000000 -- passed.
switch:admin>
```

Test a Ports External Transmit and Receive Path

- 1. Connect to the switch as the administrator.
- 2. Connect the port you want to test to any other switch port with the cable you want to test.
- 3. Enter the crossporttest command with the following operand

(This is a partial list. Refer to the Fabric OS Reference Guide for more information):

[-nframes count]

Specify the number of frames to send.

[-lb_mode mode]

Select the loopback point for the test.

[-spd_mode mode]

Select the speed mode for the test.

[-ports itemlist]

Specify a list of user ports to test.

Example

```
switch:admin> crossporttest
Running Cross Port Test .... passed.
```

Test a Switches Internal Components

To use the **crossporttest** to test a switches internal components:

- 1. Connect to the switch as the administrator.
- 2. Connect the port you want to test to any other switch port with the cable you want to test.
- 3. Enter the crossporttest -lb_mode 5 command.

Where 5 is the operand that causes the test to be run on the internal switch components.

(This is a partial list. Refer to the Fabric OS Reference Guide for more information):

[-nframes count]	Specify the number of frames to send					
[-lb_mode mode]	Select the loopback point for the test.					
[-spd_mode mode]	Select the speed mode for the test.					
[-ports itemlist]	Specify a list of user ports to test.					

Test Components To and From the HBA

- 1. Connect to the switch as the administrator.
- 2. Enter the **fPortTest** command with the following operands (refer to the *Fabric OS Reference Guide* for details):

[passCount]	Specify the number of times (or number of frames per port) to execute this test (default is infinite or until enter key is hit)
[port_number]	Specify the port on which to run to test (F_Port by default).
[payload_pattern]	Specify the pattern of the test packets payload.
[pattern_width]	Specify the width of the pattern which user specified - it could be 1, 2, or 4 (which are byte, word, or quad)
[pattern_size]	Specify the number of words in test packet payload (default is 512)
Example	

```
switchname:admin> fporttest 100,8,0xaa55,2, 512
Will use pattern: aa55 aa55 aa55 aa55 aa55 aa55 ...
Running fPortTest .....
port 8 test passed.
value = 0
```

The example above executed **fPortTest** 100 times on port 8 with payload pattern 0xaa55, pattern width 2 (meaning word width) and default payload size 512 bytes.

Check All Switch Components Between Main Board, SFP, and Fibre Cable

The following procedure exercises all the switch components from the main board --> SFP --> fibre cable --> SFP on the device --> back to main board.

- Make sure all connected cables and SFPs are of the same technology (i.e. a short wavelength SFP switch port should be connected to another short wavelength device SFP through a short wavelength cable).
- 2. Connect to the switch as the administrator.
- 3. Determine which ports are L-Ports by entering the switchshow command.
- Enable ports for loopback mode by entering loopporttest
 [--slot number] [-nframes count][-ports itemlist][-seed payload_pattern][-width pattern_width].
 Refer to the FOS Command Reference for more information about the operands.
- 5. Create a frame F of data size (1024) bytes.
- 6. Transmit frame F via port M, with D_{ID} to the FL port (AL_PA = 0).
- 7. Pick up the frame from port M, the FL port.
- 8. Determine if any of the following statistic error counters are non-zero:

ENC_in, CRC_err, TruncFrm, FrmTooLong, BadEOF, Enc_out, BadOrdSet, DiscC3.

- 9. Determine if the transmit, receive, or class 3 receiver counters are stuck at a value.
- 10. Determine if the number of frames transmitted is not equal to the number of frames received.
- 11. Repeat steps 5 through 10 for all L-ports present until:
 - a. the number of frames requested is reached
 - b. all ports are marked bad
- 12. Look for errors. See the list below for possible errors.

Possible Errors

One or more of the following errors may appear if failures are detected. Refer to the *Diagnostics and Error Messages Guide* to find details and actions for any errors that appear.

DATA INIT PORT DIED EPI1_STATUS_ERR ERR_STAT ERR_STATS_2Long ERR STATS BADEOF ERR_STATS_BADOF ERR_STATS_C3DISC ERR STATS CRC ERR_STATS_ENCIN ERR STATS ENCOUT ERR_STATS_TRUNC ERR_STAT_2LONG ERR_STAT_BADEOF ERR_STAT_BADOS ERR_STAT_C3DISC ERR_STAT_CRC ERR_STAT_ENCIN

ERR_STAT_ENCOUT ERR_STAT_TRUNC FDET_PERR FINISH_MSG_ERR FTPRT_STATUS_ERR MBUF_STATE_ERR MBUF_STATUS_ERR NO SEGMENT PORT_ABSENT PORT_ENABLE PORT_M2M PORT_STOPPED PORT_WRONG RXO FAM PERR RXQ_RAM_PERR STATS STATS_C3FRX STATS_FTX TIMEOUT XMIT

Check Port's External Transmit and Receive Path

The following procedure exercises the path of a loop from the port N transmitter, along the parallel loopback path, and back to the same N port transmitter. Loopback adapters are optional for this test.

This test does *not* exercise the SFP or the fibre cable. This test only checks components that are attached to the switch and that are on a FC arbitrated loop.

- 1. Connect to the switch as the administrator.
- 2. Disable the switch by entering switchdisable at the command line.
- 3. Enter **portloopbacktest** [*passcount*] to set all ports for parallel loopback.

Refer to the Fabric OS Reference Guide for detailed information about the optional operand.

- 4. Transmit frame F through port N.
- 5. Pick up the frame from the same port N.
- 6. Check the following statistic error counters for non-zero values:

ENC_in, CRC_err, TruncFrm, FrmTooLong, BadEOF, Enc_Out, BadOrdSet, DiscC3

- 7. Check if the transmit, receive, or class 3 receiver counter are stuck at a value.
- 8. Check if the number of frames transmitted is not equal to the number of frames received.
- 9. Repeat steps 4 through 8 for all ports present until:
 - The number of frames (or passCount) requested is reached.
 - All ports are marked as bad.

Possible Errors

One or more of the following errors may appear if failures are detected. Refer to the *Diagnostics and Error Messages Guide* to find details and actions for any errors that appear.

DIAG-INIT DIAG-PORTDIED DIAG_XMIT DIAG-TIMEOUT DIAG_ERRSTAT DIAG-STATS DIAG-DATA

Check all Switch Components of the Port Transmit and Receive Path

The following procedure exercises all the switch components from the main board --> SFP --> fibre cable --> back to SFP --> back to main board.

- 1. Make sure all cables used for connected port and SFPs are of the same technology (i.e. a short wavelength SFP switch port should be connected to another short wavelength device SPF through a short wavelength cable).
- 2. Connect ports from different ASICs, if possible (for example, connect port 1 port 7).
- 3. Connect to the switch as the administrator.
- 4. Enter **switchdisable** *if* the switch should assume all ports are cable loopbacked (and test accordingly).

or

Leave the switch enabled if only cable loopbacked ports should be tested (and the rest ignored).

5. (Optional) Enter setmediamode to limit the test to ports with that contain SFPs.

This mode must be disabled when test is complete.

- 6. Enable the ports for cabled loopback mode by entering **crossporttest** with the selected operands. Refer to the *Fabric OS Reference Guide* for details regarding the operands.
- 7. Create a frame F of maximum data size (2112 bytes).
- 8. Transmit frame F through port M.
- 9. Pick up the frame from its cross connected port N. An error is reported if any port other than N actually receives the frame.
- 10. Determine if any of the following statistic error counters are non-zero:

ENC_in, CRC_err, TruncFrm, FrmTooLong, BadEOF, Enc_out, BadOrdSet, DiscC3.

- 11. Determine if the transmit, receive, or class 3 receiver counters are stuck at a value.
- 12. Determine if the number of frames transmitted is not equal to the number of frames received.
- 13. Repeat steps 7 through 12 for all ports until:
 - the number of frames requested is reached.
 - all ports are marked bad.
- 14. (Optional) Disable SFP mode. If **setmediamode** was entered, the mode remains it volatile memory until it is disabled. Enter **setmediamode** 0.

Additional Component Tests

The following list displays additional tests that can be used to determine those switch components that are not functioning properly. Refer to the *Fabric OS Reference Guide* for details on these tests.

Test	Function					
portloopbacktest	Functional test of port N->N path. Refer to "Check Port's External Transmit and Receive Path".					
portregtest	A read and write test of the ASIC SRAMs and registers.					
spinsilk	Functional test of internal and external transmit and receive paths at full speed.					
sramretentiontest	Verifies that data written into the miscellaneous SRAMs in the ASIC are retained after a 10 second wait.					
crossporttest	Verifies the functional components of the switch.					
turboramtest	Verifies the on chip SRAM located in the 2 Gbit/sec ASIC using the Turbo- Ram BIST circuitry. These same SRAMS are tested by portregtest and sramretentiontest using PCI operations, but for this test the BIST controller is able to perform the SRAM write and read operations at a much faster rate.					
statstest	Verifies the 2 Gbit/sec ASIC statistics counter logic.					
Related Switch Test Command:						
itemlist	List parameter syntax and grammar information; restricts the items to be tested to a smaller set the parameter values.					

 Table 15-7
 Switch Component Tests

Link Failure

A link failure occurs when a server or storage is connected to a switch, but the link between the server/ storage and the switch does not come up. This prevents the server/storage from communicating through the switch.

If the **switchshow** command and/or the LED lights indicate that the link has not come up properly, follow the steps for one or more of the areas indicated below.

A link failure can be caused by one of the following reasons:

- "Switch State"
- "Port's Physical State"
- "Speed Negotiation Failure"
- "Link Initialization Failure (Loop)"
- "Port Has Come Up in a Wrong Mode"

- 1. Enter the **switchshow** command.
- 2. Check the switchState entry in the switchshow command output.
- 3. Use the following list of switch states to determine the next step:

 Table 15-8
 SwitchState and Actions to Take

SwitchState	Action
Online	The state of the switch is ok. Move on to check the "Port's Physical State".
Offline	Enable the switch by entering the switchenable command.
Testing	Wait for the switch to complete its test.
Faulty	Check the condition of the switch. Enter the switchStatusShow and errShow or errDump commands and identify the malfunctioning parts. Refer to the <i>Fabric OS Reference Guide</i> for more information.

Port's Physical State

- 1. Enter the **switchshow** command.
- 2. Check the port and state columns in the switchshow output.
- 3. Use the following list to determine the next step:

Table 15-9 Port States and Suggested Actions

Port State	Action					
Online	The port physical state is OK. If the link has not come up, go to "Port Has Come Up in a Wrong Mode".					
No_Card	Check the SFP/GBIC.					
No_Module	Check the SFP/GBIC.					
No_Light	Check the physical contact and the cabling.					
No_Sync	The port is receiving light but out of sync. Move on to "Speed Negotiation Failure".					
In_Sync	The port is in sync, but is not online. Move on to "Link Initialization Failure (Loop)".					
Laser_Flt	Check the physical contact and the cabling.					
Port_Flt	Check the physical condition of the port. Refer to "Identifying Media-Related Issues".					
Diag_Flt	Check the physical condition of the port. Enter the diagShow and errShow or errDump commands and identify the cause.					
Testing	Wait for the completion of the test.					

Speed Negotiation Failure

Note

Skip this section if the port speed is set to a static speed through the portCfgSpeed command.

The port negotiates the link speed with the opposite side. The negotiation usually completes in 1-2 seconds; however, sometimes the speed negotiation fails.

Determine if the negotiation was successfully completed:

- 1. Enter the portLogShow or portLogDump command.
- 2. Check the events area of the output for the following information:

1 Gig example:

14:38:51.976 SPEE sn <Port#> NC 00000001,00000000,00000001

2 Gig example:

14:39:39.227	SPEE	sn	<port#></port#>	NC	00000002,00000000,0000001	
--------------	------	----	-----------------	----	---------------------------	--

- The sn field indicates a speed negotiation.
- The NC field indicates Negotiation Complete.
- The 01 or 02 fields indicate the speed that has been negotiated.

If these fields do not appear, move on to the step 3.

3. Correct the negotiation by entering the **portCfgSpeed** [*slotnumber*/]*portnumber*, *speed_level* command if the fields above do not appear.

Link Initialization Failure (Loop)

- 1. Verify the port is an L_Port.
 - a. Enter the switchShow command.
 - b. Check the comment field of the output to verify that the switch port indicates an L_Port. If a loop device is connected to the switch, the switch port must be initialized as an L_Port.
- 2. Verify the loop initialization if the port is not an L_port.
 - a. Enter the portLogShow or portLogDump command.
 - b. Check the event area for a loopscn entry with command code LOOP.

Example:

14:35:12.866 tReceive loopscn <Port#> LOOP 10f5cbc0

The loopscn entry display indicates that the loop initialization is complete.

3. Skip point-to-point initialization.

SilkWorm switches the point-to-point initialization after the Loop Initialization Soft Assigned (LISA) phase of the loop initialization. This behavior sometimes causes trouble with old HBAs. If this is the case:

a. Skip point-to-point initialization by using the **portCfgLport** Command.

Point-to-Point Initialization Failure

1. Confirm that the port is active

If a Fabric device or another switch is connected to the switch, the switch port must be active.

- a. Enter the **portLogShow** or **portLogDump** commands.
- b. Verify that the State Change Notification (SCN) code is 1. An SCN of 1 indicates that the port is active.

Example:

13:25:12.506 PORT scn <Port#> 1

2. Skip over the loop initialization phase

After becoming an active port, the port becomes an F_Port or an E_Port depending on the device on the opposite side. If the opposite device is a Fabric device, the port becomes an F_Port. If the opposite device is another switch, the port becomes an E_Port.

Some Fabric devices have problem with loop initialization. If this is the case, perform the following step:

a. Enter the portCfgGport command.

Port Has Come Up in a Wrong Mode

- 1. Enter the switchShow command.
- 2. Check the comment fields for the following output and follow the suggested actions.

 Table 15-10
 SwitchShow Output and Suggested Action

Output	Suggested Action					
Disabled	Enter the portEnable command.					
Bypassed	Check the output from portLogShow or portLogDump commands and identify the link initialization stage where the initialization procedure went wrong.					
Loopback	Check the output from portLogShow/PortLogDump commands and identify the link initialization stage where the initialization procedure went wrong.					

Output	Suggested Action
E_port	If the opposite side is not another switch, the link has come up in a wrong mode. Check the output from portLogShow/PortLogDump commands and identify the link initialization stage where the initialization procedure went wrong.
F_port	If the opposite side of the link is a fabric device, the link has come up in a wrong mode. Check the output from portLogShow or PortLogDump commands.
G_port	The port has not come up as an E_port or F_port. Check the output from portLogShow or PortLogDump commands and identify the link initialization stage where the initialization procedure went wrong.
L_port	If the opposite side is <i>not</i> a loop device, the link has come up in a wrong mode. Check the output from portLogShow or PortLogDump commands and identify the link initialization stage where the initialization procedure went wrong.

 Table 15-10
 SwitchShow Output and Suggested Action

Marginal Links

A marginal link involves the connection between the switch and the edge device. Isolating the exact cause of a marginal link involves analyzing and testing many of the components that make up the link: switch port, switch SFP, cable, the edge device, and the edge device SFP.

Confirming the Problem

The following steps provide a brief overview of possible steps to troubleshoot a marginal link.

1. Enter the **portErrShow** command.

Example

switch:admin> porterrshow														
	fra	ames	enc	crc	too	too	bad	enc d					frjt	fbsy
	tx	rx	in		shrt		eof	out			sync			
2								=====						
0:	22	24	0	0	0	0	0	1.5m	0	7	3	0	0	0
1:	22	24	0	0	0	0	0	1.2m	0	7	3	0	0	0
2:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:	149m	99m	0	0	0	0	0	448	0	7	6	0	0	0
5:	149m	99m	0	0	0	0	0	395	0	7	б	0	0	0
6:	147m	99m	0	0	0	0	0	706	0	7	б	0	0	0
7:	150m	99m	0	0	0	0	0	160	0	7	5	0	0	0
8:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
12:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
13:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
14:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
15:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
36:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
37:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
38:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
39:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40:		146m	0	0	0	0	0	666	0	6	796	7	0	0
41:		149m	0	0	0	0	0	15k	0	2	303	4	0	0
42:		152m	0	0	0	0	0	665	0	2	221	5	0	0
43:		147m	0	0	0	0	0	16k	0	2	144	4	0	0
44:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
45:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
46:	0	0	0	0	0	0	0	0	0	0	0	2	0	0
47:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
swit	ch:adm	nın>												

2. Establish if there are a relatively high number of errors (such as CRC errors or ENC_OUT errors), or if there are a steadily increasing number of errors to confirm a marginal link.

If high errors exist, refer to step 1.

Isolating the Areas

- 1. Move the suspected marginal port cable to a different port on the switch.
 - If the problem stops or goes away, the switch port or the SFP is marginal. Continue to step 2
 - If the problem does *not* stop or go away, refer to "Ruling Out Cabling Issues" or "Checking for Nx_Port (Host or Storage) Issues".
- 2. Replace the SFP on the marginal port.

- 3. Run the **portLoopBack** test on the marginal port. Refer to the *FOS Reference Guide* or "I2C bus Errors" for more information.
- 4. Check the results of the loopback test, and proceed as follows:
 - If the loopback test failed, the port is bad. Replace the port card.
 - If the loopback test did not fail, the SFP was bad.

Ruling Out Cabling Issues

1. Begin by performing the steps in "Isolating the Areas".

By now an SFP problem is ruled out.

- 2. Insert a new cable in to the suspected marginal port.
- 3. Enter the **portErrShow** command to determine if a problem still exists.
 - If the **portErrShow** output displays a normal number of generated errors, the issue is solved.
 - If the **portErrShow** output still displays a high number of generated errors, move on to "Checking for Nx_Port (Host or Storage) Issues".

Checking for Nx_Port (Host or Storage) Issues

1. Begin performing the steps in "Isolating the Areas" and "Ruling Out Cabling Issues".

By now an SFP problem and a cable problem have been ruled out.

2. Follow the troubleshooting procedures for the Host or Storage device.

Switch Hangs when Connected to a Terminal Server

If a switch appears to be "hung-up", or passing no data (including error messages to the serial portLog), it may indicate that the switch is being Flow Controlled by a terminal server. By default, Flow Control is disabled on v3.1 and v4.2.0 switches; however, if Flow Control has been enabled, it could cause a switch to hang.

Determining if a Switch is Being Flow Controlled

Flow Control is most likely causing a switch to "hang" if the following is true:

- A terminal server is connected to the serial port.
- The switch is *not* sending messages to the serial portLog.
- Flow Control has been enabled on the terminal server.

If the statements above are true, Flow Control from the terminal server is most likely preventing the switch from passing traffic. Refer to "Correcting a "Hung" Switch" to correct the problem.

Correcting a "Hung" Switch

If Flow Control has been enabled, and a switch is being flow-controlled by a terminal server, perform the following procedure:

- 1. Access the console.
- 2. Press Ctrl-Q to cause the terminal to re-enable flow.
- 3. Determine if flow control is enabled, using the appropriate commands for the terminal server or terminal emulator.
- 4. Disable Flow Control if it is enabled.

Using Flow Control can cause a switch to "hang" if it fails to manage the flow control properly, or manages it out of the expected sequence.

Caution

Though Flow Control may need to be disabled on the client device, disabling Flow Control *can* create a separate undesirable situation: unexpected or missing information in the serial portLog. Refer to "Unexpected Output in the Serial PortLog".

Unexpected Output in the Serial PortLog

Console serial port logs can sometimes appear to have incorrect, corrupt, or missing information due to potential overruns when connected to:

- terminal emulation programs
- terminal emulation devices
- concentrators

If your serial port is connected to terminal emulation programs or terminal emulation devices, perform the following steps:

- 1. Determine if your serial port is connected to terminal emulation/terminal servers/concentrators.
- 2. Access the console.
- 3. Determine if flow control is disabled, using the appropriate commands for the terminal server or terminal emulator. Flow Control is disabled by default for v3.1.2 and v4.2.0.

If Flow Control is disabled, this is most likely causing the incorrect data in the serial portLog.

4. Enable Flow Control on the terminal server.

Caution

Though Flow Control may need to be enabled on the client device, use of flow control *can* create a separate, undesirable situation. Flow Control may cause the switch to appear to "hang" if the client device fails to manage the flow control properly, or manages it out of the expected sequence. Refer to "Switch Hangs when Connected to a Terminal Server".

Refer to "Switch Hangs when Connected to a Terminal Server" for more Flow Control-related information.

Inaccurate Information in the Error Log

In rare instances, events gathered by the Track Change feature can report inaccurate information to the error log.

For information regarding enabling and disabling Track Changes (TC), refer to "Tracking Switch Changes".

Scenario:

A user entered a correct user name and password, but the login was rejected because the maximum number of users had been reached. However, when looking at the error log, the login was reported as successful.

Explanation:

If the maximum number of switch users has been reached, the switch will still perform correctly in that it will reject the login of additional users (even if they enter correct user name and password information).

However, in this limited scenario, the Track Change feature will report this event inaccurately to the error log; it will appear that the login was successful. This scenario only occurs when the maximum number of users has been reached; otherwise, the login information displayed in the error log should reflect reality.

15

The **portlogdump** output is a powerful tool that can be used to troubleshoot fabric issues. This chapter lists most of the Fibre Channel codes that you need to decode your Fibre Channel **portlogdump** traces and/or Fibre Channel analyzer traces, and explains how to decode the Fabric OS **portlogdump** traces.

Use the **portlogdump** output and this chapter to read the actions and communications of a fabric. By understanding the processes that are taking place in the fabric, you can locate areas that may be problematic.

This chapter assumes that you are familiar with Fibre Channel Physical (PFC_PH) frame and the **portlogdump** format, and also understand types of frames. The release version of this document correlates to the release version of the SilkWorm firmware.

Note

Information contained in this chapter is subject to change without notice. In addition, undocumented messages may appear in the **portlogdump**.

This chapter contains:

- "Understanding the portlogdump," on page 16-2
- "Using and Customizing the portlogdump," on page 16-3
- "Locating Information by Task," on page 16-7
- "About the portlogdump Fields," on page 16-12
- "The FC_PH Frame," on page 16-19
- "State Change Notification (SCN)," on page 16-26
- "Brocade-Specific Code," on page 16-33
- "Speed Negotiation," on page 16-35
- "Extended Link Service (ELS)," on page 16-46
- "Switch Fabric Internal Link Services (SW_ILS)," on page 16-54
- "Fabric Services," on page 16-75
- "ISL Miscellaneous," on page 16-79
- "Fibre Channel Common Transport Protocol (FC-CT)," on page 16-80
- "Payload Information," on page 16-119
- "FC-CT Payload Frames," on page 16-129
- "Fibre Channel Protocol Information," on page 16-136

Understanding the portlogdump

The **portlogdump** command displays the port log, showing a portion of the FC-PH header (refer to "The FC_PH Frame," on page 16-19) and the payload (refer to "Payload Information," on page 16-119).

Reading portlogdump Entries

Click on the links in example below to view information about that entry.

Example

RSL_SWT134:admin> portlogdump						
time	task	event	port	cmd	args	
16:30:41.780	PORT	Rx	9	40	02fffffd,00fffffd,0061ffff,14000000	
16:30:41.780	PORT	Tx	9	0	cOfffffd,00fffffd,0061030f	
16:30:42.503	PORT	Tx	9	40	02fffffd,00fffffd,0310ffff,14000000	
16:30:42.505	PORT	Rx	9	0	cOfffffd,00fffffd,03100062	
16:31:00.464	PORT	Rx	9	20	<pre>02fffc01,00fffca0,0063ffff,01000000</pre>	
16:31:00.464	PORT	Tx	9	0	c0fffca0,00fffc01,00630311	
16:31:00.465	nsd	ctin	9	fc	000104a0,0000007f	
16:31:00.465	nsd	ctout	9	fc	00038002,00000003,01fffc01	
16:31:00.466	PORT	Tx	9	356	03fffca0,00fffc01,00630311,01000000	
16:31:00.474	PORT	Rx	9	0	c0fffc01,00fffca0,00630311	
16:31:01.844	PORT	Tx	9	40	02fffffd,00fffffd,0312ffff,14000000	
16:31:01.854	PORT	Rx	9	0	cOfffffd,00fffffd,03120064	
16:31:01.963	PORT	Rx	9	40	02fffffd,00fffffd,0065ffff,14000000	
16:31:01.963	PORT	Tx	9	0	cOfffffd,00fffffd,00650313	
16:31:14.726	INTR	pstate	0	LF2		
16:31:14.729	PORT	scn	0	137	0000000,0000000,0000008	
16:31:14.729	PORT	scn	0	129	0000000,0000000,0000400	
16:31:14.729	PORT	scn	0	2	00010004,00000000,0000002	
16:31:14.730	SPEE	sn	0	ws	0000002,0000000,0000000	
<output td="" trunc<=""><td>ated></td><td></td><td></td><td></td><td></td></output>	ated>					

Additional portlogdump Examples

For more portlogdump examples, refer to:

- "Reading an SCN Event," on page 16-27
- "ELS Examples," on page 16-53
- "SW ILS Examples," on page 16-59
 - "Routing Frame Example," on page 16-60
 - "NSD Example," on page 16-62
 - "SW_ILS Reject Example," on page 16-63
- "ctin and ctout Event Example," on page 16-111
- "Speed Negotiation Example," on page 16-45 (IOCTL Event)

Firmware Version Variations in the portlogdump

The following section described the major differences between the 3.x and 4.x portlogdump output.

The Task Field Variations

The **portlogdump** Task field has changed in v4.x. The Task field in v3.x displays a "t" before every task. In v4.x, the "t" no longer appears (see examples below).

The Arg Field Variations

Fabric OS v3.x Example

In v3.x, the arg field had 5 arguments. Arg 5 was an IU address pointer used by developers to obtain more data.

 time
 task
 event
 port
 cmd
 args

 00:44:26.599
 tFspf
 Tx
 8
 40
 02fffffd,00fffffd,0284fffff,14000000,10cac760

Fabric OS v4.x Example

In v4.x, there are a maximum of four arguments, and the *IU pointer* no longer appears (see examples).

time	task	event	port	cmd	args
16:30:41.780	PORT	Rx	9	40	02fffffd,00fffffd,0061ffff,14000000

Note the differences between the task column and the args columns from v3.x to 4.x.

Using and Customizing the portlogdump

There are several commands that can be used to view certain aspects of the **portlogdump** (such as a list of possible events) and customize the output of the **portlogdump**.

Refer to the Fabric OS Reference for more detailed command information.

16

portlogdump Related Commands

The following commands are related to the **portlogdump**.

 Table 16-1
 portlogdump-Related Commands

Command	Action
<pre>portlogdump [count[, saved[, portid]]]</pre>	Displays the port log, listing all entries in the log without page breaks. This command displays the same information as portlogshow, but portlogshow prompts you to type a return between each page of the output.
portlogdumpport portid	Displays the port log of specified port. The command displays all entries in the log without any page breaks. It is identical to portlogshow <i>port</i> , except that portlogshow <i>port</i> prompts the user to type return between each page of output.
portlogshow [count, saved, portid]	Displays the port log. This command displays 22 entries at a time. The portlogshow command displays the same information as portlogdump, but it prompts you to type a return between each page of the output.
portlogclear	Clears the port log. You may want to clear the port log before triggering an activity so that the log displays only the activity related to that activity.
portlogeventshow	Displays the ID associated with the event. You can use this ID to enable/disable an event and prevent it from appearing in the portlogdump program output.
portlogshowport [portid]	Displays the port log of a specified port, showing 22 entries at a time. It is identical to portlogdump <i>port</i> , except that portlogdump <i>port</i> does not prompt you to type a return between each page of the output.
portlogtypedisable type	Disables the portlog for a specified portlog type. Disabling the portlog type prevents it from appearing in the portlogdump output. This saves space for significant events.
portlogtypeenable type	Enables the portlog for a specified portlog type. Enabling the portlog type allows it to appear in the portlogdump output.

Displaying a List of Possible Port Log Events

Use the following procedure to list portLog Events, and to find their associated ID number.

- 1. Connect to the switch as the administrator.
- 2. Enter the **portlogeventshow** command.

The left column displays the ID associated with the Event. This number can be used to enable/ disable a particular event; this keeps it from appearing in the **portlogdump** output.

The middle column displays the Events.

The right column displays the enabled/disabled status of the Event. A disabled Event will not appear in the **portlogdump**. 0 = Enabled, 1 = Disabled.

Example

		portlogeventshow Disabled
1	start	0
2	disable	0
3	enable	0
4	ioctl	0
5	Tx	0
6	Txl	0
7	Tx2	0
8	Tx3	0
9	Rx	0
10	Rx1	0
11	Rx2	0
12	Rx3	0
13	stats	0
14	scn	0
15	pstate	0
16	reject	0
17	busy	0
18	ctin	0
19	ctout	0
20	errlog	0
21	loopscn	0
22	create	0
23	debug	1
24	nbrfsm	0
25	timer	0
26	sn	0
27	fcin	0
28	fcout	0
29	read	0
30	write	0
31	err	0
32	frame	0
33	msRemQ	0
34	msRemR	0
35	nsRemQ	0
36	nsRemR	0
37	rscn	0
38	state	0
39	xalloc	0
40	xfree	0

Customizing the portlogdump Output

- 1. Connect to the switch as the administrator.
- 2. Enter the **portlogeventshow** command.

The left column displays the ID associated with the Event. Note the number of the specific Event that you want to enable/disable.

The middle column displays the Events.

The right column displays the enabled/disabled status of the Event. A disabled Event will not appear in the **portlogdump**. 0 = Enabled, 1 = Disabled.

3. Enter one of the following commands:

portlogtypeenable ID to enable the particular Event in the portlogdump output.

or

portlogtypedisable ID to disable the particular Event in the portlogdump output.

ID is the ID Number gathered is step 2.

Example

swi ID I	tch:admin> Event-Name	portlogeventshow Disabled	
	start	1	-
2	disable	0	
3	enable	0	
4	ioctl	0	
5	Tx	0	
6	Tx1	0	
7	Tx2	0	
8	Tx3	0	
9	Rx	0	
10	Rx1	0	
11	Rx2	0	
12	Rx3	0	
	stats	0	
14	scn	0	
15	pstate	0	
16	reject	0	
17	busy	0	
18	ctin	0	
	ctout	0	
20	errlog	0	
21	loopscn	0	
22		0	
23	debug	1	
24	nbrfsm	0	
25	timer	0	
26	sn	0	
27	fcin	0	
28	fcout	0	
29	read	0	
30	write	0	
31	err	0	
	frame	0	
33	msRemQ	0	
34	msRemR	0	
	nsRemQ	0	
36	nsRemR	0	
37	rscn	0	
	state	0	
39	xalloc	0	
40	xfree	0	
swi	tch:admin>	portlogtypedisable	1

In the example above, the "start" Event is disabled. It will not appear in the **portlogdump** output.

Locating Information by Task

The following table is an information map, and displays where to locate specific **portlogdump** information.

Tasks listed in the following table that have a prefix of "t" are version 3.x tasks. Version 4.x tasks do not include that prefix.

Task Event Port Command Argument Go to... RSCN Switch ID tFabric N/A N/A page 16-26 page 16-26 enable Port # 1 = enableIU pointer, 0 page 16-13 2 = disableioctl Port # IOCTL code IU pointer, 0 page 16-37 Port # Port State Machine N/A pstate page 16-141 Tx() Port # Size of payload in bytes Header & Payload ELS / R CTL=22/23: page 16-47 If FC-CT (cmd code FC-CT/R CTL=02/03: page 16-88 page 16-81 tFCP Port # Size of payload in bytes Header & Payload ELS / R CTL=22/23: Tx() page 16-47 If FC-CT/R CTL=02: page 16-81 tFSPF joctl Port # ELS / R CTL=22/23: page 16-47 If FC-CT/R CTL=02: page 16-81 tFCPH loopscn Port # Loopscan code N/A page 16-33 tFSPF ioctl Port # IOCTL code IU pointer, 0 page 16-37 Port # Size of payload in bytes If FC-CT cmd code page ELS / R CTL=22/23: Tx() 16-88 page 16-47 If FC-CT/R CTL=02: page 16-81 tInterrupt Port # Port State Machine Code N/A page 16-141 pstate Port # Internal SCN Value page 16-28 scn sn SW page 16-35 Port # Speed negotiation code scn tLOOP Port # LIP page 16-33 loopscn Loop code

 Table 16-2
 portlogdump
 Information
 Mapping
 Table

Task	Event	Port	Command	Argument	Go to
tMSd	Tx	Port #	Size of payload in bytes	If FC-CT cmd code page 16-88	ELS / R_CTL=22/23: page 16-47
					If FC-CTR_CTL=02: page 16-81
	ctin	Port #	CT_Type	FC_CT's payload	page 16-80
	Ctout	Port #		FC_CT's payload	page 16-80
tNSCAM	nsRemR	Port #	FCCT response code	Word0, word1, nameserver port type, IU pointer	page 16-80
	nsRemQ	Port #	Fabric Internal FC-CT command	Word0, word1, nameserver port type, IU pointer	page 16-80
	rscn	Port #	Request ID (24 bit addresses)	N/A	page 16-80
	ioctl	Port #	IOCTL code	pointer, 1	page 16-37
	tx	Port #	Size of payload in bytes	N/A	page 16-80
tNsd	ctin	Port #	Last byte of well known address	FC_CT's payload	page 16-80
	ctout	Port #	Last byte of well known address	FC_CT's payload	page 16-80
	nsRemR	Port #	FC_CT's payload	Word0, word1, nameserver port type, IU pointer	page 16-80
	sRemQ	Port #	Fabric Internal FC-CT command	Word0, word1, nameserver port type, IU pointer	page 16-80
	rscn	Port #	Request ID (24 bit FC addresses)	00fffffd, ELS code, IU pointers, IU pointer	ELS / R_CTL=22/23: page 16-47
					If FC-CTR_CTL=02: page 16-81
	Tx()	Port #	Size of payload in bytes	Word0, word1, nameserver port type, IU	ELS / R_CTL=22/23: page 16-47
				pointer	If FC-CTR_CTL=02: page 16-81
	create	null	null	tNSCAM	page 16-80

 Table 16-2
 portlogdump Information Mapping Table (Continued)

Task	Event	Port	Command	Argument	Go to
tReceive	Busy	Port #	Busy Reason Code	01 PHYSICAL_N_PORT_ BUSY 03 N_PORT_RESOURCE_ BUSY	page 16-47
	disable	Port #	1 = enable, 2 = disable	N/A	page 16-13
	ioctl	Port #	IOCTL code	N/A	page 16-37
	loopscn	Port #	Loopscan code	N/A	page 16-33
	pstate	Port #	Port State Machine Code	LLI	page 16-141
	reject	Port #	null	Reject reason code page 16-57.	ELS / R_CTL=22/23: page 16-47
					If FC-CT/R_CTL=02: page 16-81
	Rx()	Port #	Size of payload in bytes	If FC-CT cmd code page 16-88. Also check	ELS / R_CTL=22/23: page 16-47
		R_CTL on page 16-20	If FC-CT/R_CTL=02: page 16-81		
	scn	Port #	SCN Code.	Null	page 16-28
	Tx()	Port #	Size of payload in bytes	If FC-CT cmd code page 16-88	ELS / R_CTL=22/23: page 16-47
					If FC-CT/R_CTL=02: page 16-81
	sn	Port #	NC	Speed negotiation code,00000000,0000000 0	page 16-35
tResponse	Tx()	Port #	Size of payload in bytes	If FC-CT cmd code page 16-88	ELS / R_CTL=22/23: page 16-47
					If FC-CT/R_CTL=02: page 16-81
tRT	Тх	Port #	Size of payload in bytes	ILS command code	page 16-54
tRtwr	debug 255			Respond IU, sent IU	page 16-13
	Tx	Port #	Size of payload in bytes	Respond IU, sent IU	page 16-13

 Table 16-2
 portlogdump Information Mapping Table (Continued)

Task	Event	Port	Command	Argument	Go to
tShell	Tx()	Port #	Size of payload in bytes	If FC-CT cmd code page 16-88	ELS / R_CTL=22/23: page 16-47
					If FC-CT/R_CTL=02: page 16-81
	ioctl	Port #	Ioctl code	UI pointer, 0	page 16-37
	sn	Port	Name	State value	page 16-35
tSnmpd	create		null	tFaScn	page 16-13
SPEE	sn	Port #	WS	Speed negotiation event,00000000,000000 00	page 16-35
tSwitch	ioctl	Port #	Ioctl code	N/A	page 16-37
	pstate	Port #	Port State Machine	N/A	page 16-141
	sn	Port #	WS	Speed negotiation event,00000000,000000 00	page 16-35
	Tx()	Port #	Size of payload in bytes	If FC-CT cmd code page 16-88	ELS / R_CTL=22/23: page 16-47
					If FC-CT/R_CTL=02: page 16-81
tTransmit	Reconf	Port #	BF (build fabric)	SW_ILS command codes	page 16-123
	ctin	Port #	Size of payload	FC-CT payload	page 16-81
	ctout	Port #	Size of payload	FC-CT payload	page 16-81
	Ioctl	Port #	IOCTL code		page 16-37
tZone	Ioctl	Port #	IOCTL code	IU pointer, IU pointer	page 16-37
	Reject	Port #	Reject	Reject code on page 16-57	page 16-68
	Tx()	Port #	Size of payload in bytes	If FC-CT cmd code page 16-88	ELS / R_CTL=22/23: page 16-47
					If FC-CT/R_CTL=02: page 16-81
	Rx()	Port #	Size of payload in bytes	If FC-CT cmd code page 16-88	ELS / R_CTL=22/23: page 16-47
					If FC-CT/R_CTL=02: page 16-81

 Table 16-2
 portlogdump Information Mapping Table (Continued)

Task	Event	Port	Command	Argument	Go to
PORT	ioctl	port#	IOCTL Code		page 16-37
	scn	port#	SCN Code	Null	page 16-26
	Tx ()	port#	SCN Code	Size of payload in bytes	page 16-26
	Rx ()	port#	Size of payload in bytes	If FC-CT cmd code page 16-88	ELS / R_CTL=22/23: page 16-47
					If FC-CT/R_CTL=02: page 16-81
INTR	PS (primitive sequence) pstate	port#	State Machine Value		page 16-141
FLTR	debug	Port#	NA	Internal debug codes	debug
LOOP	loopscn	Port#	Loopscan code - Brocade ASIC LOOP Code cmd column	Brocade ASIC LOOP Code LoopSCN Reason Code column	page 16-33
nsd	ctin	Port#	Last byte of well known address	FC_CT's payload	page 16-81
	ctout	Port#	Last byte of well known address	FC_CT's payload	page 16-81
	rscn	0	Word 0 = Domain Controller on another switch (Ex. fffcDD, where DD = Domain)	Word 1 = Domain Controller of switch passing change information, Brocade- specific command code for SW_ILS, Word 6, last 3 bytes = 24 bit address of changed devices	ELS Command Codes page 16-47
	Rscn	0	Word 0 = 24 bit address device that did SCR	Word 1 = Domain Controller of switch passing change information, ELS Word 6, last 3 bytes = 24 bit address of changed device	ELS Command Codes page 16-47
	nsRemQ	0: 1st nibble NS cmd code	Last 3 nibbles: Name Server Cmd code. Fabric internal FC-CT cmd codes page 16-89	D_ID, S_ID, Name Server Port Type page 16-89	page 16-81
	NsRemR	Port#	Name Server Cmd Code page 16-84	D_ID, S_ID, Additional information command code	page 16-81

 Table 16-2
 portlogdump Information Mapping Table (Continued)

Task	Event	Port	Command	Argument	Go to
msd	ctin	Port#	Last byte of well known address	FC-CT's payload	page 16-81
	ctout	Port#	Last byte of well known address	FC-CT's payload	page 16-81
FSS	msg	N/A		Service ID, Component ID, Send receive data, optional flags, Additional text description.	page 16-71
	cmd	N/A			page 16-71
	event	N/A			page 16-71

 Table 16-2
 portlogdump Information Mapping Table (Continued)

About the portlogdump Fields

Time

Time is the Event's date and time in milliseconds.

Example

16:30:41.780	PORT	Rx	9	40	02fffffd,00fffffd,0061ffff,14000000
16:30:41.780	PORT	Tx	9	0	cOfffffd,00fffffd,0061030f
16:30:42.503	PORT	Tx	9	40	02fffffd,00fffffd,0310ffff,14000000

Task

The Task column narrows the area being described by a specific line in the output.

Example

portlogdump:	+ l-				
time	task 	event	port		args
15:48:11.473	INTR	pstate	19	LF2	
15:48:11.474	INTR	pstate	19	LF1	
15:48:11.474	INTR	pstate	19	OL2	
15:48:11.474	INTR	pstate	19	LR2	
15:48:11.474	INTR	pstate	19	LR3	
15:48:11.474	INTR	pstate	19	AC	
15:48:11.474	PORT	scn	19	11	0000000,0000000,00010000

Task Descriptions

The following table lists the Tasks description and functionality.

Table 16-3Task Descriptions

Task	Description	Functionality
v3.x Tasks		·
tASd	Alias Server Daemon	The Alias service is used for managing multicast groups by supporting the create, add, remove, and destroy functions.
tErrlog	Error Log	Information fed into the error log task can be viewed using errShow/Dump commands.
tFabric	Fabric	Fabric initialization. Fabric configuration. FC-SW protocol - ELP, EFP
tFaScn	Fabric Assist State Change Notification	Refers to Fabric Assist updates and changes. Refer to "State Change Notification (SCN)," on page 16-26.
tFCP	Fibre Channel Protocol	Probe - query SCSI command
tFCPH	Fibre Channel Physical	Handles frame sequences for FC-2 processes Frame at FC-2 level and below
tFCPth		Monitors SCSI static components in Fabric
tFspf	Fibre Channel Shortest Path First	Routing
tHttpD	Web Server Daemon	Monitors the Web Server
tInterrupt	Interrupt	See event associated with the interrupt to identify the reason for the interrupt.
tMsApi	Management Server Application Programming Interface	Allows API calls into the switch for management and monitoring purposes.
tMSd	Management Server Daemon	Monitors the MS - includes the Fabric Configuration Service and the Unzoned Name Server.
tNSCAM	Name Server Cache Manager.	It updates the Name Server (NS) data bases across switches as a background task.
tNsd	Name Server Daemon	Monitors Name Server.
tReceive	Receive	Handle all frames received.
tResponse	Response	Task initiation sequence.
TRestart	Restart	Reboots system after stopping all activity.
tRlogind	Remote login daemon	Remote Login Information.

Task	Description	Functionality	
tRt	Reliable Transport	Events we want to deliver but we do not care how long it takes, e.g., zoning delta propagation - persistently retries transmission of changed information to another switch.	
tRtwr	Reliable Transport With Response		
tSnmpd	SNMP Agent Daemon	Monitors static components in Fabric.	
tShell	Telnet	A telnet task that starts up a shell in VX works.	
tSwitch	Switch	1st task started to control switch like a "parent" task. Major function includes initializing Mac address.	
tSyslog	Syslog daemon	Used to forward error messages.	
Task	Description	Functionality	
tThad	Threshold	Monitors static components in fabric.	
tTimers	Timer	Time Out functions.	
tThFru	Threshold Field Replaceable Unit	A FW task that monitors physical/FRU components in fabric- comes as a default regardless of whether FW license exists.	
tTransmit	Transmits	Sequences switch initiates.	
v4.x Specif	ic Tasks		
INTR	Internal	Events associated with this task:	
		Port State (PS), and Debug	
PORT	Port kernel driver	Equivalent to "tReceive" and "tTransmit" in v3.x code, as well as any frame transmit of receive on behalf of any user processes (daemons).	
		Events associated with task: debug, I/O control, State Change Notification, Transmit and Receive.	
SPEED	Speed	ASIC speed negotiation function; speed selection between 1 or 2 Gbps.	
FLTR Filtering		ASIC frame filtering function; used in WWN zoning (WWN).	
LOOP	Loop	ASIC loop function; it has to do with loop port initialization.	
nsd	Name Server Daemon	NS daemon, it's the same as "tNSd" for 3.x	
msd	Management Server Daemon	MS daemon, it's the same as "tMSd" for 3.x	
asd	Alias Server Daemon	AS daemon, it's the same as "tASd" for 3.x.	
		Event associated with this task: ctin and ctout	

 Table 16-3
 Task Descriptions (Continued)

Task	Description	Functionality
fspfd	Fibre Channel Shortest Path First	Event associated with this task: Neighbor state transition
zone	Zoning	Event associated with this task: debug
fcpd	N/A	No event is associated with this task.
FSS	Fabric OS State Synchronization.	The primary function of FSS is to deliver State Update messages from ACTIVE components to their peer STANDBY components. FSS determines if fabric elements are synchronized (and thus FSS "compliant"). Associated events are: UPCONN, DOWNCONN, COMP, INCOMP, DUMPRDY, SYNCSUCC, FAILSYNC, START, STOP, RECOVFAIL, TAKE, YIELD, MISCATCH, UPDATE, ACTIVE, STANDBY, TXQHIGH, RXQHIGH, MISSSVC,

 Table 16-3
 Task Descriptions (Continued)

Event

An Event is the specific action that is being described by the output. For a complete list of possible Events for your switch, refer to "Displaying a List of Possible Port Log Events," on page 16-4.

Example

portlogdump:					
time	task	event	port	cmd	args
15:48:11.473	INTR	pstate	19	LF2	
15:48:11.474	INTR	pstate	19	LF1	
15:48:11.474	INTR	pstate	19	OL2	
15:48:11.474	INTR	pstate	19	LR2	
15:48:11.474	INTR	pstate	19	LR3	
15:48:11.474	INTR	pstate	19	AC	
15:48:11.474	PORT	scn	19	11	0000000,0000000,00010000

The example above indicates an internal task (INTR) --> associated event is the Port State Machine (pstate) --> and the cmd field describes the event, which is a link failure (LF2).

Refer to "Port State Machine Values," on page 16-141.

Events Descriptions

The following table describes the possible Events:

 Table 16-4
 Events Descriptions

Event	Description			
start	Describes a switch start or re-start event.			
disable	Indicates a port is disabled.			
enable	Indicates a port is enabled.			
ioctl	Indicates a port I/O control is executed.			
Тх	Indicates a frame is transmitted.			
Tx()	Indicates a frame is transmitted, class 1, 2 or 3.			
Rx	Indicates a frame is received.			
Rx()	Indicates a frame is transmitted, class 1, 2 or 3.			
stats	Indicates a port status or statistics.			
scn	Indicates a state change notification.			
pstate	Indicates a port changes physical state.			
reject	Indicates that a frame is rejected.			
busy	Indicates a received frame is busied.			
ctin Indicates a Common Transport (CT) based request is received.				
ctout	tout Indicates a Common Transport (CT) based response is transmitted.			
errlog Indicates a message is added to the error log.				
loopscn Indicates a loop state change notification.				
create Indicates a task is created.				
debug Indicates generic debugging information.				
nbrfsm	Indicates a neighbor state transition.			
timer	Indicates a timer.			
sn	Indicates a speed negotiation.			
nsRemQ	Indicates an interswitch NS query.			
nsRemR	Indicates an interswitch NS response.			
rscn	Indicates a Registered State Change Notification (RSCN).			
Reconf	Indicates a fabric reconfiguration.			
Debug	Indicates generic debugging information.			
ps	Indicates a primitive sequence in an Fibre Channel protocol exchange.			

16

Port

The port field in the portlogdump output indicates a physical port number.

Nov 25	task	event po r	rt cm	d args
11:00:48.433 11:00:48.449 11:00:48.649 11:00:48.649 11:00:49.166 11:00:49.166	tTransmit tReceive tTransmit tReceive	Rx3 Tx3 Rx3	2 0 5 116 2 116	02fffffd,00fffffd,00dbffff,14000000,11cd35a0 c0fffffd,00fffffd,00db0189, ,11cd35a0 22240300,00140500,07acffff,03000000,11cd35a0 22240300,00140500,07acffff,03000000,11cd35a0 221500ef,17240300,0095ffff,03000000,11cd7480 3
11:00:49.733	tFspf	3	2 40	02fffffd,00fffffd,018affff,14000000,11cdc090

Cmd

The cmd field represents different values depending on the task and event.

Commands (cmd) are associated with each event category. For example, in the output below, the last line of the cmd column represents the scn code. If the event is a rx or PORT the cmd is usually the size of the payload.

portlogdump: time	task	event	port	cmd	args
15:48:11.473	INTR	pstate	19	LF2	
15:48:11.474	INTR	pstate	19	LF1	
15:48:11.474	INTR	pstate	19	OL2	
15:48:11.474	INTR	pstate	19	LR2	
15:48:11.474	INTR	pstate	19	LR3	
15:48:11.474	INTR	pstate	19	AC	
15:48:11.474	PORT	scn	19	11	0000000,0000000,00010000

Example State Events

Some possible State Events are:

- AC Active State
- FC Name Server (in MS)
- LR1 Link Reset: LR Transmit State
- LR2 Link Reset: LR Receive State
- LR3 Link Reset: LRR Receive State
- LF1 Link Failure: NOS Transmit State
- LF2 Link Failure: NOS Receive State
- OL1 Offline: OLS Transmit State
- OL2 Offline: OLS Receive State
- OL3 Offline: Wait for OLS State

Also refer to "Brocade ASIC Loop Code," on page 16-137.

Args

The args field represents different values depending on the task and event.

Example

time	task	event	port cmd args
11:01:15.166 11:01:15.166 11:01:15.183 11:01:15.183	tNSCAM tReceive	nsRemQ Tx Rx Tx Tx	0 4a0 00fffc24,00fffc14,0000007f,00000000 2 4 02fffc24,00fffc14,01adffff,0000007f,11cdde40 2 132 03fffc14,00fffc24,01ad032b,01000000,11cd35a0 2 0 c0fffc24,00fffc14,01ad032b, ,11cd35a0

For more information regarding reading arguments, refer to "Reading portlogdump Entries".

About Args in Older Firmware Versions

Firmware v2.x or older

Prior to v2.1.2 firmware, **portlogdump** format displays only three arguments in the Arg field. The first two arguments belong to the FC_PH header (WD0 and WD1). The third argument belongs to the payload (WD6).

Firmware v2.x or greater

Firmware greater than v2.1.2 but less than v3.0, **portlogdump** format displays four arguments in the arg field. The first three arguments belong the FC_PH header (WD0,WD1, and WD4). The fourth argument belongs to the payload.

Firmware v3.x

Firmware v3.0 or greater displays five arguments in the Arg field. The fifth argument is an IU (Information Unit) address pointer. The undocumented command **iuShow** [0xIU pointer] provides more information about the frame. IU is the memory allocation, thus it can be taken by another task. Brocade Developers use this UI pointer is for the reference to gather more information)

Firmware v4.x

In most instances, the IU pointer (the fifth argument, which is available in 3.x), does *not* appear in the v4.x firmware output.

In specific Tasks (such as FSS), a fifth argument is displayed; however, the display is in text instead of ASCII.

About the IU Pointer

The IU address pointer appears in the 5th argument of the **portlogdump** (for example, **10ca5ae0**) in versions prior to v4.x. Developers use this pointer to get more information. If the address is still available then issue **iuShow** 0xiupointer to obtain more data). The IU pointer (the 5th argument) does not appear in the **portlogdump** of v4.x firmware.

The FC_PH Frame

About FC_PH Frames

For general Fibre Channel information, refer to "Fibre Channel Protocol Information," on page 16-136.

A fibre channel frame has a header and a payload. The header contains control and addressing information associated with the frame. The payload contains the information being transported by the frame and is determined by the higher-level service or FC_4 upper level protocol. There are many different payload formats based on the protocol.

- The TYPE field (Word2, bit 31-24) will tell which information unit (IU) format to use.
- The routing control INFO bit (bit 27-24) determines how to interpret the payload.

Table 16-5 FC_PH Frame Diagram

	4	8	Up to 2112 Bytes	4	4
ſ	S			С	Е
	0	HEADER	PAYLOAD	R	0
	F			С	Р

Table 16-6 FC_PH Frame Cross-References

	Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
	0	"Routing Control Bits (R_CTL)"	"Des	tination_ID (D_I	D)"		
H E A	1	"Class Specific Control Field (CS_CTL)"	"Seq	"Sequence ID (SEQ_ID)"			
D	2	"Type Code"	"Frame	"Frame Control (F_CTL)"			
E R	3	"Sequence ID (SEQ_ID)"	"Data Field Control (DF_CTL)"	Control (SEQ_CNT)"			
	4	"Originator_ID	0 (OX_ID)"	"Responder_ID (RX_ID)"			
	5	Parameter					
		Payload - 6 to N word					

FC_PH Frames Definitions

Routing Control Bits (R_CTL)

Routing Control bits (R CTL) are the first 8 bits of the header. They define the type of frame and its contents. The first four bits (Bit 31-28) identify the frame type. The 2nd four bits "INFO bit" (Bit 27-24) defines the contents of the frame or identify the function of the frame

Example

00:44:26.599 tFspf Tx 8 40 **02**fffffd,00fffffd,0284ffff,14000000,10cac760

02 = R_CTL request

Refer to "Routing Control Bits - R_CTL Diagram".

R_CTL	Information					
R_CTL						
R_bits	Information	Description				
FC-4 Device Data x'0'	0	Uncategorized Device Data				
	1	Solicited Device Data				
	2	Unsolicited Control Info (Request)				
	3	Solicited Control Info (Reply)				
	4	Unsolicited Device Data				
	5	Data Descriptor				
	6	Unsolicited Command				
	7	Command Status Information				
Extended Link Service x'2'	2	Request				
	3	Reply				
FC-4 Link Data x'3'	2	Request				
Note - Same as FC-4 Device	3	Reply				
Data frames	4	Video Data				

R_CTL		
Basic Link Service x'8'	0	No Operation (NOP)
	1	Abort Sequence (ABTS)
	2	Remove Connection (RMC)
	3	Reserved
	4	Basic_Accept (BA_ACC)
	5	Basic Reject (BA_RJT)
	6	Preempted (PRMT)
	Others	Reserved
Link Control x'C'	0	АСК
	1	АСК
	2	N_Port Reject (P_RJT)
	3	Fabric Reject (F_RJT)
	4	N_Port Busy (P_BSY)
	5	Fabric Busy to Data Frame (F_BSY)
	6	Fabric Busy to Link_Control Frame (F_BSY)
	7	Link Credit Reset (LCR)
	8	Notify (NTY)
	9	End
	Others	Reserved

Table 16-7 Routing Control Bits - R_CTL Diagram

Destination_ID (D_ID)

The Destination ID (D_ID) refers to the Native port address (24 bit address).

Example The fffffd field is the D_ID

00:44:26.599 tFspf Tx 8 40 02**fffffd**,00fffffd,0284ffff,14000000,10cac760

In the example above, the D_ID is the Well Known Address of a Fabric Controller. Refer to "Well Known Addresses," on page 16-141 for a list of all Well Known Addresses.

Source_ID (S_ID)

The Source ID (S_ID) refers to the Native port address (24 bit address).

Example The fffffd field is the S_ID

00:44:26.599 tFspf Tx 8 40 02fffffd,00**fffffd**,0284ffff,14000000,10cac760

In the example above, the S_ID is the Well Known Address of a Fabric Controller. Refer to "Well Known Addresses," on page 16-141 for a list of all Well Known Addresses.

Frame Control (F_CTL)

This field contains miscellaneous control information regarding the frame.

 Table 16-8
 Frame Control (F_CTL) Diagram

Frame Control Filed Bits (F_CTL)				
Value	Code	Description		
0xC00000	FCTL_XCHSEQ	Exch & Seq Context		
0x800000	FCTL_RESPXCH	Responder of Exchange		
0x400000	FCTL_RECSEQ	Sequence Recipient		
0x200000	FCTL_1STSEQ	First sequence of Exchange		
0x100000	FCTL_LASTSEQ	Last sequence of Exchange		
0x080000	FCTL_ENDSEQ	Last data frame of sequence		
0x040000	FCTL_ENDCONN	End of Connection pending		
0x020000	FCTL_CHAINEDSEQ	Chained Sequence active		
0x010000	FCTL_SEQINIT	Transfer sequence initiative		
0x800000	FCTL_NEWXID	X_ID reassigned		
0x004000	FCTL_INVXID	Invalidate X_ID		
0x003000	FCTL_ACKFORM	Ack form capability		
0x000800	FCTL_COMPRESS	Data compression		
0x000400	FCTL_ENCRYPT	Data encryption		
0x000200	FCTL_RETXSEQ	Sequence retransmission		
0x000100	FCTL_UNIDIRECTX	Unidirectional transmission		
0x0000C0	FCTL_CSCMASK	Cont Seq Condition		
0x0000C0	FCTL_SEQDLY	Sequence to follow-delayed		
0x000080	FCTL_SEQSOON	Sequence to follow-soon		
0x000040	FCTL_SEQIMM	Sequence to follow-immediately		
0x000000	FCTL_SEQNONE	No information		
0x000030	FCTL_ASCMASK	Abort Seq Condition		
0x000030	FCTL_SEQABTR	Abort Seq - do ABTR		
0x000020	FCTL_SEQSTOP	Stop seq		
0x000010	FCTL_SEQABTS	Abort seq - do ABTS		
0x000000	FCTL_SEQCONT	Continue seq		
0x000030	FCTL_POLICYMASK	Seq policy		

Frame Control Filed Bits (F_CTL)				
0x000030	FCTL_DISCRETX	Discard Multi Seq: Immed ReTx		
0x000020	FCTL_PROCESS	Process policy with Infinite Buf		
0x000010	FCTL_DISC1ABT	Discard single seq, abort		
0x000000	FCTL_DISCMABT	Discard Multi seq, Abort		
0x000008	FCTL_RELOFF	Relative Offset present		
0x000004	FCTL_XCHREASS	Exchange Reassembly - reserved		
0x000003	FCTL_FILLMASK	Fill bits		
0x060f00	FCTL_INVALID	class 1, compression, encryption		
0xffff	NULL_XID	Unassigned ox_id or rx_id		

 Table 16-8
 Frame Control (F_CTL) Diagram

Sequence ID (SEQ_ID)

Used to identify and track all of the frames within a sequence between a source and destination port pair.

Sequence Count (SEQ_CNT)

Used to indicate the sequential order of frame transmission within a sequence or multiple consecutive sequences within the same exchange.

Originator_ID (OX_ID)

Originator_ID (OX_ID) refers to the exchange ID assigned by the originator port.

Example

00:44:26.599 tFspf Tx 8 40 02fffffd,00fffffd,**0284**ffff,14000000,10cac760

In the above example, the **0284** is the Originator ID. Refer also to *FC_PH Frame Cross-References* on page 16-19

Responder_ID (RX_ID)

The Responder_ID is assigned by the responder to the Exchange.

Example

00:44:26.599 tFspf Tx 8 40 02fffffd,00fffffd,0284**ffff**,14000000,10cac760

In the above example, the ffff is the Responder ID. Refer also to FC_PH Frame Cross-References.....

Data Field/Payload

The standard limits the size maximum up to 2112 bytes. Refer also to "The FC_PH Frame," on page 16-19 or *FC_PH Frame Cross-References* on page 16-19

Type Code

The Type Code provides the type of protocol service (i.e., FC_CT, FCP, FCIP and etc...).

Type Code				
туре	Type code			
0x00	Basic Link			
0x01	Extend Link			
0x04	ISO/I?E?C? 8802-2 LLC			
0x05	FCIP			
0x08	SCSI_FCP			
0x09	SCSI-GPP			
0x20	Fibre Channel Services (NS,MS,AS,etc.)			
0x21	FC-FG			
0x22	FC_SW			
0x23	FC-AL			
0x24	FC-SNMP			
0x25-0x27	Fabric Services			
0x30-0x33	Scalable Coherent Interface			
0x40	HIPPI-FP			
0x58	Virtual Interface			
0x5b	Fabric			
0xe0 -0xff	Vendor Specific			

 Table 16-9
 Type Code

Data Field Control (DF_CTL)

This field indicates the presence of one or more optional headers at the beginning of the data field of the frame. Optional headers are used for information that may be required by some applications or protocol mappings.

DF_CTL		
0x40	SECURITY_HEADER	

DF_CTL		
0x20	NETWORK_HEADER	
0x10	ASSOCIATON_HEADER	
0x03	DEVICE_HEADER	
0x8c	DF_RESERVED	

Table 16-10 Data Field Control (DF_CTL) Optional Headers

Class Specific Control Field (CS_CTL)

Different controls are necessary for different classes of service. This field is always zero per the standards. If it is something other than zero, then it is Brocades internal code called "IU_Status Values". Table 16-11 shows the class-specific control field codes. These are Brocade internal constants; not standard FC descriptions.

Brocade Specified Internal Code: CS_CTL (IU_Status Value)				
0x02	IU_P_RJT	received P_RJT		
0x03	IU_F_RJT	received F_RJT		
0x04	IU_P_BSY	received P_BSY		
0x05	IU_F_BSY	received F_BSY		
0x06	IU_F_BSY_LC	received F_BSY_LC		
0x10	IU_NO_EXCH	cannot allocate exchange		
0x11	IU_OFFLINE	port is offline		
0x12	IU_BAD_EXCH	exchange ID not valid		
0x013	IU_NO_ACK	ED_TOV expired		
0x14	IU_CORRUPT	CRC err, encoding err, too long, etc		
0x15	IU_BAD_CLASS	class 1 frame		
0x16	IU_BAD_S_ID	invalid S_ID		
0x17	IU_BAD_D_ID	invalid D_ID, VC, or multicast address		
0x18	IU_TIMED_OUT	frame timed out, generate F_BSY		
0x19	IU_TX_UNAVAIL	Tx unavailable, generate F_BSY		
0x1a	IU_LOGIN_RQRD	login required		
0x1b	IU_PROTOCOL	protocol error		
0x1c	IU_RX_FLUSHED	frame flushed by rx port		
0x20	IU_ALPA_TMPNA	AL_PA temporarily not available		
0x21	IU_ALPA_PMTNA	AL_PA permanently not available		
0x22	IU_LOGO_OFFLINE	logo received or port goes offline		
0x23	IU_ZONE_CONFLT	Zone conflict		

 Table 16-11
 Class Specific Control Field (CS_CTL) IU Status Values

Brocade Specified Internal Code: CS_CTL (IU_Status Value)				
0x24	IU_ABTS_RX	Received an ABTS that flushed this IU		
async IU state	e, response			
0x80	IU_ASYNC_RESP	async IU response payload received		
0x81	IU_ASYNC_TO	async IU response timeout		
0x82	IU_ASYNC_ABTS	async IU abtsed		
0x83	IU_ASYNC_LOGO	async IU killed due to port logout/offline		
0x84	IU_ASYNC_ACKTO	async IU ack timeout		

 Table 16-11
 Class Specific Control Field (CS_CTL) IU Status Values

State Change Notification (SCN)

There are three different State Change Notifications:

- "Stage Change Registration (SCR)," on page 16-26
- "Register State Change Notification (RSCN)," on page 16-26
- "Internal State Change Notification (SCN)," on page 16-26

SCN Definitions

Stage Change Registration (SCR)

The State Change Registration (SCR) Extended Link Service requests the Fabric Controller to add the N_Port or NL_Port to the list of N_Ports and NL_Ports registered to receive the Registered State Change Notification (RSCN) Extended Link Service.

Register State Change Notification (RSCN)

The Fabric Controller only issues RSCN requests to N_Ports and NL_Ports that have registered to be notified of state changes in other N_Ports and NL_Ports. This registration shall be performed via the State Change Registration (SCR) Extended Link Service. An N_Port or NL_Port may issue an RSCN to the Fabric Controller without having completed SCR with the Fabric Controller.

Internal State Change Notification (SCN)

The Internal State Change Notification is used for internal state change notifications, not external changes. This is the switch logging that the port is online or is an Fx_port. This is not what is sent from the switch to the Nx_ports. An scn example is included on page 16-27.

Reading an SCN Event

The following examples show the same output from three different versions of firmware.

```
Example v3.x
```

portLogDump time	task	event	port	cmd	args
12:05:28.116	tReceive	scn	13	0	137

Refer to "SCN Codes and Descriptions," on page 16-28 to view the cmd description.

Example v4.0.x

Refer to "SCN Codes and Descriptions," on page 16-28 to view the cmd description.

Example v4.2.0

```
time task event port cmd args
12:05:28.116 PORT scn 7 137 00000000,00000000,0000008
```

- The cmd represents the scn State. Refer to "SCN Codes and Descriptions," on page 16-28 to view the cmd description.
- Read the args columns as follows:
 - Arg 1 is dependant on the scn Type. For this example:

First 16-bits (Most Significant) = The mode that the port is in. Refer to "SCN Modes," on page 16-31.

Second 16-bits (Least Significant) = The error that causes the port to be marked OFFLINE.

- Arg 2 is dependent on the scn Type; it is currently not used (00000000).
- Arg 3 is the scn Type. Refer to "SCN Types," on page 16-31.
- Combine the scn type (the 3rd arg) and the scn state (the cmd column) to uniquely identify a particular scn. The scn state alone is not sufficient, and is not guaranteed to be unique across all scn types. Refer to "SCN Types," on page 16-31, and "SCN States by Type," on page 16-29.

16

SCN Codes and Descriptions

The SCN Codes described in this table represent the SCN State, and appear in the cmd column of an SCN event. For v4.2.0, combine the scn type (the 3rd arg) and the scn state (the cmd column) to uniquely identify a particular scn. The scn state alone is not sufficient, and is not guaranteed to be unique across all scn types.

SCN Value	Status	Description
0	UNKNOWN	Port status is unknown
1	ONLINE	Port is online (in active state)
2	OFFLINE	Port is offline
3	TESTING	Port is in use by diagnostics
4	FAULTY	Port is marked faulty
5	E_PORT	Port is an E_Port
6	F_PORT	Port is Fabric aware port (F or FL)
7	SEGMENTED	Port is segmented
8	T_Port	Port is a trunking port, not trunk master.
9	AC_PORT	Port is active; link reset is done for E_Port or master trunk port.
10	LIP_ONLINE	Loop initialization occurred.
11	LR_Port	Port is active; link reset is done for non-E_Port.
16	Domain Valid	A valid domain was reported.
17	Domain Invalid	An invalid domain was reported.
18	Domain Reachable	A reachable domain was reported.
19	Domain Unreachable	An unreachable domain was reported.
20	Switch ONLINE	A switch came online.
21	Switch OFFLINE	A switch went offline.
22	Zoning Configuration Change	A zoning configuration change occurred.
23	Watchdog probe timer expired	The software watchdog (which monitors Fabric OS modules on the kernel) probing timer expired.
24	Software Watchdog register request	The software watchdog (which monitors Fabric OS modules on the kernel) sent a register request.
120	FLOGI_DCC	FLOGI device

Table 16-12 Internal State Change Notification (SCN)

SCN Value	Status	Description
121	FORCE_OFFLINE	Force OFFLINE a port that is already OFFLINE
122	BUF_ONLINE	Became online by acquiring free buffers.
123	BUF_OFFLINE	Became offline due to lack of buffers
128	FCP message probe, start probing	Fibre Channel Protocol - message probing started.
129	FCP message flush, stop probing	Fibre Channel Protocol - message probing stopped.
130	NS message update area	Name Server update area
131	NS message add area	Name Server add area
132	NS message delete area	Name Server message delete area
133	Route all done	Both domain and are routes are done.
144	ROUTE_ALL_DONE	Both domain and are routes are done.
145	NSMSG_UPD_SCR	

 Table 16-12
 Internal State Change Notification (SCN) (Continued)

SCN States by Type

Table 16-13 SCN States - Displayed by Type

Code	Status	Description	
PORT_S	PORT_SCN Type		
0	UNKNOWN	port status is unknown	
1	ONLINE	port is online (in active state)	
2	OFFLINE	port is offline	
3	TESTING	port is in use by diagnostics	
4	FAULTY	port is marked faulty	
5	E_PORT	port is an E_Port	
6	F_PORT	port is an F_port	
7	SEGMENTED	port is segmented	
8	T_PORT	port is a trunking port, not trunk master	
10	LIP_ONLINE	Loop initialization occurred	
11	LR_PORTSCN		
120	FLOGGI_DCC		

Code	Status	Description
121	FORCE_OFFLINE	Force OFFLINE a port that is already OFFLINE
122	BUF_ONLINE	became online by acquiring free buffers
123	BUF_OFFLINE	became offline due to lack of buffers
SWITCH	I_SCN Type	1
16	DOMAIN_VALID	
17	DOMAIN_INVALID	
18	DOMAIN_REACHABLE	
19	DOMAIN_UNREACHABLE	
20	SW_ONLINE	
21	SW_OFFLINE	
22	CFG_CHANGED	1
23	SWD_SWITCH_HEARTBEAT_REQ	1
24	SWD_SWITCH_REGISTER_REQ	
25	PASSWD_CHANGED	
26	SW_PERSISTENT_DISABLE	
27	REM_DOMAIN_SET	
28	REM_DOMAIN_CLEAR	
FAB_SC	N Type	1
9	AC_PORT	port is active; link reset is done for E_Port or master trunk port
11	LR_PORT	port is active; link reset is done for nonE_Port
26	SW_PERSISTENT_DISABLE	Sent when the switch is ready, that is,. after POST if POST is running, and the switch is currently persistently disabled.
SEC_SC	N Type	
27	REM_DOMAIN_SET	Routes to remote domain are set up
28	REM_DOMAIN_CLEAR	Routes to remote domain are cleared
120	FLOGI_DCC	FLOGI device
FCP_SC	'N Type	·
128	FCPMSG_PROBE	
129	FCPMSG_FLUSH	
UPD_SC	CN Type	
135	NSMSG_UPD_AREA	
136	NSMSG_ADD_AREA	

Table 16-13 SCN States - Displayed by Type (Continued)

Code	Status	Description
137	NSMSG_DEL_AREA	
144	ROUTE_ALL_DONE	
GBIC_SCN Type		
1	ONLINE	Module in
2	OFFLINE	Module out

 Table 16-13
 SCN States - Displayed by Type (Continued)

SCN Types

The SCN Types appear in Arg 3. Refer to example "v4.2.0," on page 16-27.

Value	Code	Description
0x0000001	SWITCH_SCN	switch state change notification
0x0000002	PORT_SCN	port state change notification
0x0000008	UPD_SCN	update state change notification
0x0000080	REMOTE_SCN	
0x00000100	ZONE_SCN	zone check
0x00000200	LOOP_SCN	
0x00000400	FCP_SCN	FCP
0x0000800	GBIC_SCN	GBIC (SFP) module in/out scn
0x00002000	_LI_SCN	
0x00010000	FAB_SCN	fabric application
0x00040000	SEC_SCN	FLOGI device violation

Table 16-14 Types of SCNs

SCN Modes

SCN Modes appear in the first bit of Arg 1 for an port_scn Type. Refer to example "v4.2.0," on page 16-27

Value	Name
0	PORT_SCN_MODE_NORMAL
1	PORT_SCN_MODE_DISABLED
2	PORT_SCN_MODE_LOOPBACK
3	PORT_SCN_MODE_BYPASSED

SCN Errors

The following scn errors appear in the second bit of Arg 1 in a port_scn Type output. Refer to v4.2.0," on page 16-27.

Value	Name
0	PORT_SCN_ERR_NO_ADDITIONAL_INFO
1	PORT_SCN_ERR_NO_MODULE
2	PORT_SCN_ERR_NO_LIGHT
3	PORT_SCN_ERR_NO_SYNC
4	PORT_SCN_ERR_NOT_ONLINE
5	PORT_SCN_ERR_FAULT
6	PORT_SCN_ERR_LASER_FAULT

 Table 16-16
 SCN Errors

Brocade-Specific Code

Brocade Port Physical State Values

State	Description
NO_CARD	No optional card installed (Check license key)
NO_Module	No GBIC module installed
LASER_FLT	Laser fault
NO_LIGHT	No light being received
NO_SYNC	Out of Synchronization
IN_SYUNC	In Synchronization
PORT_FLT	Port Fault
DIAG_FLT	Diagnostic Fault
LOCK_REF	Receiver Locking Reference Clock
Unknown	port status is unknown

 Table 16-17
 Brocade Specific Physical State Values

Brocade LED State Values

Table 16-18	Brocade Specific LED State Values	5
-------------	-----------------------------------	---

LED State	Description
STEADY_BLACK	No light
STEADY_YELLOW	Receiving light, but not yet online
SLOW_YELLOW	Disabled (diagnostics or portDisable)
FAST_YELLOW	Error, fault with port
STEADY_GREEN	Online and ready to go
SLOW_GREEN	Online but segmented
FAST_GREEN	Online in internal loopback
FLICKERING	Online and traffic flowing through port
YELLOW_GREEN	Bypass

Brocade Bypass Reason Code

Code	Reason
1	Disabled
2	Potential E_Port
3	QL task issued bypass

Table 16-19 Brocade Specific Bypass Reason Code

Brocade Switch Parameter Meanings

Parameter	Meaning
TACHYON	Better IP behavior with Tachyon
ISOLATED	Do not probe for E_Ports
NOTYPES	Do not probe for broadcast or multicast
VCINDID	VC encoding in DID (SilkWorm mode)
USECSCTL	Use CS_CTL in FC_header for vc
NOCLASSF	Turn class 2 frames into class F frames
DISTANCE	Long distance fabric
PID256FORMAT	Use 256-port pid format
VCXLTLINIT	Link init protocol for setup vcxlt mode note this is port wide config sent through op_mode in ELP

 Table 16-20
 Brocade Specific Switch Parameter Meanings

Speed Negotiation

Speed Negotiation Code Command

Code	Value	Description
NC	01	Negotiation complete with speed 1G
NM	02	Negotiate master
NF	03	Negotiate follow
NC	04	Negotiation complete with speed 2G
WS	01	Signal is okay and actual start of SN - "trigger for start"

Table 16-21 Speed Negotiation Code Command

Speed Negotiation EVENT

Output	Description
0xaa	SN_ATTACH
0xb0	SN_LASER_FAIL
0xc0	SN_RX_IBM_SIG_LOSS
Oxd0	SN_WD_TIMEOUT
0xe0	SN_RX_SIG_LOSS
0xee	SN_RX_SIG
0xf0	SN_RX_SYNC_LOSS
0xff	SN_RX_SYNC
0x01	SN_INCONSISTENT

Table 16-22 Speed Negotiation Event

Speed Negotiation State Values

Value	Code	Description
0	SPEED_NEGO_INIT	entry to state machine
18	WAIT_FOR_SIGNAL_18	wait for signal state corr to box 18
11	WAIT_FOR_SIGNAL_11	state box 11
20	NEGOTIATE_MASTER_20	neg master state corr to box 20

Value	Code	Description
21	NEGOTIATE_MASTER_21	state box 21
27	NEGOTIATE_MASTER_27	state box 27
31	NEGOTIATE_FOLLOW_31	neg follow state corr to box 31
34	NEGOTIATE_FOLLOW_34	state box 34
40	NEGOTIATE_COMPLETE	speed negotiation complete
50	SN_INSYNC	SN done; for RX_FIFO int do not start
		sn

Table 16-23 Speed Negotiation State Values

DISTANCE Code Value

The following codes apply only to Fabric OS v3.1.

Table 16-24 Code Value for DISTANCE

Code	Meaning
NORMAL_DISTANCE	no special long distance consideration
VERY_LONG	level one long distance <= 50km
SUPER_LONG	level two long distance <= 100km

I/O Control (ioctl)

An IOCTL event is an internal message that gives information about the port and what stage of bring-up or take down of the port (s). Refer to "Speed Negotiation Example," on page 16-45 for information on reading an IOCTL event.

IOCTL CTL Code

Table 16-25 IOCTL CTL Code

loctl Code	Description / Interpretation Arg
0x00	enable chip level port interrupt
0x01	Entry describes physical port
0x02	Entry describe WWN
0x04	Entry describes Al-PA bitmap
0x20	Enable free buffer interrupt
0x30	Get buffer and buffer port
0x31	set available buffer interrupt
0x32	Return buffer
0x33	Get Fx port error status
0x34	Get Fl port error status
0x35	Get physical state
0x36	Set physical state
0x37	Set FCTL_mode
0x38	Get device information
0x39	Get loop bmp
0x3a	Set E_Port flow control mode
0x3b	Get register map
0x3c	Return Tx buffer
0x3d	Filter processing stages
0x3e	Filter processing stage 2
0x3f	Software frame filtering
0x40	Remove all phantom nodes for port
0x41	Add a phantom device (loop only)
0x42	Translate phantom sid and did
0x43	Create phantom node for remote did
0x44	Get blm_my_alpa table from ASIC
0x45	Get blm_plt_cam table from ASIC
0x46	Get blm_plt_alpa table from ASIC
0x50	Test phantom for (S_ID, D_ID)
0x51	Add a phantom device (loop only)
0x52	Remove a phantom device

loctl Code		
0x53	Get phantom AL_PA by address ID	
0x54	Get address ID by phantom AL_PA	
0x55	Looplet init (send LIPs)	
0x56	Looplet init sequence	
	Arg: 1,0	
0x57	Loop port (or looplet) bypass	
0x58	Looplet init AL_PA bitmaps. Bitmap, IU pointer	
0x59	Looplet Unicast Routes	
0x5a	Set up port for loop diag mode	
0x5b	Loop port bypass the ALPD	
0x5c	Loop port enable the ALPD	
0x60	Write/read 64-bytes to/from the RAM buffer	
0x61	get cmem status	
0x62	Check if FL_Port a loopback sla	
0x63	Set buffer line value and offset. 1,1	
0x64	Disable FC-AL transmit front-end	
0x65	Enable FC-AL transmit front-end	
0x66	Set FL_Port to be cable loopback. Interpretation Arg: Port#, 0	
0x67	Clear Diag mode flag	
0x70	FLA Loop INITializing	
0x71	FLA Loop Port Control	
0x72	FLA Loop Status	
0x73	LPORT ALPA bitmap	
0x80	Port administration stuff.	
	The ports being set up while the switch is booting up "a,0"	
0x81	Get common hardware statistics	
0x82	Get loop hardware statistics	
0x83	Get hardware frame statistics	
0x84	Get hardware error statistics	
0x85	Get interrupt statistics	
0x86	Get available BB_Credit	

Table 16-25 IOCTL CTL Code (Continued)

loctl Code	Description / Interpretation Arg
0x87	Get bb credit for the Fx_PORT
0x88	Get public/private/phantom counts
0x8e	Get GBIC module type
0x8f	Port performance calculation
0x90	Get credits for all E_Port VCs.
	Credit values, $0 (0 = done)$
0x91	Set credits for all E_Port VCs.
	Credit values, 0 (0 =done)
0x92	Get BB-Credit for the Fx_Port.
	IU pointer, 0 ($0 = $ done)
0x93	Set up port for loop diag mode
0x94	Loop port bypass the ALPD
0x95	Loop port enable the ALPD
0x96	Get port topology
0x97	Set port topology
0x99	LIP the loop, TX_UNAVAIL on/off
0x9a	Send MRK primitive signal
0xa0	LED control
0xa1	Port is an E_Port.
	Interpretation Arg: 0,0
0xa2	Port is an F_Port.
	Native address, value
0xa3	Port is segmented
	Interpretation Arg: 0,0 (done)
0xa4	Domain name is known
	Domain#, 0 (Note - 0 means "done")
0xa5	Bring port online
0xa6	Take port offline
0xa7	Take port into Link Reset
0xa8	Add unicast route.
	Port#, cmd (cmd 1 = building)

Table 16-25 IOCTL CTL Code (Continued)

loctl Code	Description / Interpretation Arg
0xa9	Delete unicast route
	Arg = Port#, port#
0xaa	Add multicast route
	Arg = Well Known Address, port#
0xab	Delete multicast route
	Arg = Well Known Address, port#
0xac	Unicast routing table done
	$Arg = 0,0 \ (0,0 = done)$
0xad	Multicast routing table done
	Arg: $0,0 (0,0 = \text{done})$
0xae	Undo a previous F_Port ioctl
0xaf	Take a port down then up
	$Arg = 0,0 \ (0,0 = done)$
0xb0	Enable hardware zoning
	Arg = 0,0 (0,0 = done)
0xb1	Disable hardware zoning
	Arg = 0,0 (0,0 = done)
0xb2	Add members to zone
0xb3	Delete member from zone
0xb4	Add a zone type
0xb5	Add zone group
0xb6	Enable all port zoning
0xb7	Reset all port zoning
0xb8	Disable all port zoning
0xb9	Free zoning token
0xba	Setup FLOGI command tgrap
0xbb	Setup report lun cmd trap
0xbc	Get World-Wide Name and IDs
0xbd	Get receiver/originator ID
0xbe	Add LUN information
0xbf	Exclude port from zoning
0xc0	Get port interrupt bit map

Table 16-25 IOCTL CTL Code (Continued)

Description / Interpretation Arg Code	
0xc1	Enable port interrupt
0xc2	Disable port interrupt
0xc3	Check if port intr pending
0xc4	Enable chip interrupt, SW12K
0xd0	Add a SID_DID pair
0xd1	Delete a SID_DID pair
0xd2	Get the list of EE keys
0xd3	Get the current EE mask
0xd4	Set the SID-ID pair
0xd5	Clear the CRC counter for ALPA
0xd6	Get the CRC counter for ALPA
0xd7	Send word count for SID_DID pair
0xd8	RCV word count for SID_DID pair
0xd9	CRC err count for SID_DID pair
0xdc	Auto speed negative mode for arg1 value
0xdd	Get port speed ala admin.h defines
	Arg: value, 0
0xde	Port speed capability ala admin.h
	Arg: Port speed value, 0
0xdf	Get the port's long distance level
	Arg: Value, 0
0x13d	Arg: IU address pointer
0x13e	Arg: IU address pointer, 0
0xe0	Send MARK primitive onto wire
	Arg: 0,0
0xe1	Get the MARK timestamps
	Arg: 0,0
0xe2	Add the port to the trunk
	Arg: 0,0
0xe3	Get all trunk masters on the quad
	Arg: IU address pointer, IU address pointer
0xe4	Update MARK timestamp with RMT

Table 16-25 IOCTL CTL Code (Continued)

loctl Code	Description / Interpretation Arg
0xe5	Check whether port is trunkable
	Arg = Port #, IU address pointer
0xe6	Enable trunking if possible
	Arg = IU address pointer, IU address pointer
0xe7	Get trunking group information
0xe8	Get ISL band width
	Arg = IU address pointer, 0
0xf0	Add a filter counter
0xf1	Delete a filter counter
0xf2	Number of filter hit count
0xf3	Add get perf filter references
0xf4	Clear filter hit count
0xf5	Clear all filter counts for port
0x100	Get fail detection logic statuses
	Arg = IU address pointer, 0
0x101	Set fail detection control bit
0x102	Clear fail detection control bit
0x103	Set Rx_to_Tx parity control
0x104	Get Rx-to-Tx parity error status
0x105	Get Rx-to-Tx parity error status
0x106	Enable fail detection interrupt
0x107	Disable fail detection interrupt
0x108	Check for fail detection interrupt
0x120	Enable IPO zoning
0x121	Disable IPO zoning
0x122	Fabric lookup report after enable
0x123	Name server list of PIDs for IPO
0x124	Query if node is IPO target/host
0x125	Ask for list of nodes to zone check
0x126	List of IPO hosts zoned to target
0x127	RSCN received

Table 16-25 IOCTL CTL Code (Continued)

loctl Code	Description / Interpretation Arg
0x128	List of IPO targets zoned to host
	Arg = IU address pointer, 0
0x129	Check for existence of IPO hosts
0x12a	Fabric merge report after reconfigure
0x12b	Switch online SCN received
0x12c	add unicast single area route
	Arg = 0,0
0x130	Add a zone type (new)
	Arg = IU address pointer, IU address pointer
0x131	Add zone group (new)
	Arg = IU address pointer, IU address pointer
0x132	Enable all port zoning (new)
	Arg = : 0,0
0x133	Reset all port zoning (new)
	Arg = 0.0
0x134	Disable all port zoning (new)
	Arg = 0,0
0x135	Free zoning token (new)
	Arg = IU address pointer, 1
0x136	Setup PLOGI command trap (new)
	Arg = 0,0
0x137	Setup report lun cmd trap (new)
0x138	Get World-Wide Name and IDs (new)
	Arg = IU address pointer, IU address pointer
0x139	Get receiver/originator ID (new)
0x13a	Apply LUN information (new)
0x13b	Exclude port from zoning (new)
0x13c	Soft zoning port (new)
0x13d	Get frame filtering features (new)
0x13e	Set frame filtering features (new)
0x13f	Clear port zoning except dyn flt
0x140	Load sidcam (diagnostic)

Table 16-25 IOCTL CTL Code (Continued)

loctl Code	Description / Interpretation Arg
0x141	Load didcam (diagnostic)
0x142	Load LUN offset registers (diagnostic)
0x143	Load zone group RAM (diagnostic)
0x144	Load zone horizontally (diagnostic)
0x145	Load filter selection (diagnostic)
0x146	Load field definition (diagnostic)
0x147	Load action registers (diagnostic)
0x148	Get filter statistics (diagnostic)
0x149	Clear all filtering hardware (diagnostic)
0x14a	enable frame filtering (diagnostic)
0x14b	Disable frame filtering (diagnostic)
0x150	zonerscn handling
	Arg: IU address pointer, 0
0x151	Remove related CAM entries on all ports
0x160	Set alpa in blm_alpa_avail[]reg
0x161	Clear alpa in blm_alpa_avail[] reg
0x170	Freeze RT used by diags: EMC ESSLB
0x180	Get chip Time of Day
0x181	Get chip Time of Day Prescaler
0x182	Set chip Time of Day Prescaler
0x183	Get RX TOD Pre-Confirmed
0x184	Set RX TOD Pre-Confirmed
0x185	Get RX TOD Active
0x186	Set RX TOD Active
0x187	Set RX TOD Prescaler
0x188	Set RX TOC
0x189	mS to TOD click conversion
0x190	TOD click to mS conversion
0x191	Get VC translation link init
0x192	Send MARK primitive with LRTT (link round trip timer) enabled
0x193	Enable MARK retransmission

Table 16-25 IOCTL CTL Code (Continued)

loctl Code	Description / Interpretation Arg
0x194	Disable MARK retransmission
0x195	Save link round trip timer from ASIC to BLOOM driver structure
0x196	Set link round trip delay in ASIC driver structure
0x197	Called from Panic to disable all ports' RX
0x198	Get vcc credit of online E-port

Table 16-25 IOCTL CTL Code (Continued)

Speed Negotiation Example

20:07:07.896	interrupt	sn	3	WS	00f0,00000015,00000002
20:07:07.929	tFabric	ioctl	3	150	10272720,0
20:07:08.146	interrupt	scn	3	2	0x0000003
20:07:08.179	tFspf	ioctl	3	dd	10260e40,0
20:07:08.179	tFspf	ioctl	3	a9	1,e
20:07:08.179	tFspf	ioctl	3	a9	2,e
20:07:08.179	tFspf	ioctl	3	a9	3,е
20:07:08.179	tFspf	ioctl	3	a9	4 , e
20:07:08.179	tFspf	ioctl	3	a9	5,7
20:07:08.179	tFspf	ioctl	3	a9	6d,e
20:07:08.179	tFspf	ioctl	3	a9	71,7
20:07:08.179	tFspf	ioctl	3	a9	72,e
20:07:08.179	tFspf	ioctl	3	a9	74,e
20:07:08.179	tFspf	ioctl	3	a9	75,e
20:07:08.179	tFspf	ioctl	3	a9	76,e
20:07:08.179	tFspf	ioctl	3	a9	ef,e
20:07:08.179	tFspf	ioctl	3	ab	fffb00,e * 255
20:07:08.529	tReceive	sn	3	NC	0001,0000000,0000004
20:07:08.529	tReceive	loopscn	3	LIP	8002
===========					
20:14:38.385	SPEE	sn	30	WS	0000000,0000000,0000000
20:14:38.389	SPEE	sn	30	WS	000000ee,00000000,00000000
20:14:38.395	SPEE	sn	30	WS	0000001,0000000,0000000
20:14:38.995	SPEE	sn	30	NC	0000001,0000000,0000001
20:14:38.996	LOOP	loopscn	30	LIP	8002
20:14:39.021	LOOP	loopscn	30	LIP	£7£7
20:14:39.022	PORT	Tx3	30	12	22000000,00000000,ffffffff,11010000
20:14:39.058	PORT	Rx3	30	12	22000000,00000000,ffffffff,11010000
20:14:39.060	LOOP	loopscn	30	LIM	0

Extended Link Service (ELS)

About FC_PH ELS

Extended Link Services (ELS) are sent to the destination N_{port} to perform the requested function or service.

- The R_CTL field of an Extended Link Service request is always set to 0x22
- The R_CTL field of the Extended Link Service reply is set to 0x23.
- The Type filed for both requests and replies is 0x01 (**portlogdump** trace does not provide the TYPE information).

The command code for an ELS is always the first word of the payload (word 6) for both the request and reply.

There are 2148 bytes in a frame, the **portlogdump** captures a portion of the frame.

For Tx and Rx events, the first Arg field obtains the portion of the header and one word of the payload, word6. Arg 1, 2 and 3 belong to the FC_PH header (word. $0,1,4 = R_CTL,D_ID,S_ID,OX_ID,RX_ID$). The last argument (4th argument) belongs to the payload. See "ELS Examples," on page 16-53.

ELS Command Code

Table 16-26	ELS Command Code	è
-------------	------------------	---

ELS Command	Code	Description
01000000	RJT	Reject
02000000	ACC	Accept
03000000	PLOGI	N_Port Login
04000000	FLOGI	F_Port Login
05000000	LOGO	Logout
0600000	ABTX	Abort Exchange
07000000	RCS	Read Connection Status
08000000	RES	Read Exchange Status Block
0900000	RSS	Read Sequence Status Block
0A000000	RSI	Request Sequence Initiative
0B000000	ESTS	Establish Streaming
0C000000	ESTC	Estimate Credit
0D000000	ADVC	Advise Credit
0E000000	RTV	Read Timeout Value
0F000000	RLS	Read Link Status
1000000	ECHO	ECHO
11000000	TEST	Test
12000000	RRQ	Reinstate Recovery Qualifier
20100000	PRLI	Process Login
21100000	PRLO	Process Logout
22000000	SCN	State Change Notification
23000000	TPLS	Test Process Login State
24000000	TPRLO	Third Party Process Logout
2500000- 2F000000	Unused	
3000000	GAID	Get Alias ID
31000000	FACT	Fabric Activate Alias ID
32000000	FDACT	Fabric Deactivate Alias ID
33000000	NACT	N_Port Activate Alias ID
34000000	NDACT	N_Port Deactivate Alias ID

ELS Command	Code	Description
35000000- 3F000000	Unused	
4000000	QoSR	Quality of Serv
41000000	RVCS	Read Virtual C
42000000- 4F000000	Unused	
5000000	PDISC	Discover N_Po
51000000	FDISC	Discover F_Po
52000000	ADISC	Discover Addr
53000000	RNC	Report Node C
54000000	FARP	FC Address Re
55000000- 5F000000	Unused	1

nued)

ELS Command	Code	Description
3500000- 3F000000	Unused	
4000000	QoSR	Quality of Service Request
41000000	RVCS	Read Virtual Circuit Status
4200000- 4F000000	Unused	
5000000	PDISC	Discover N_Port Service Parameters
51000000	FDISC	Discover F_Port Service Parameters
52000000	ADISC	Discover Address
53000000	RNC	Report Node Capability
54000000	FARP	FC Address Resolution Protocol
5500000- 5F000000	Unused	
6000000	FAN	Fabric Address Notification
61000000	RSCN	Registered State Change Notification
62000000	SCR	State Change Registration
63000000- 6F000000	Unused	
7000000	LINIT	Loop Initialize
71000000	LPC	Loop Port Control
72000000	LSTS	Loop Status
73000000- 77000000	Unused	
78000000	RNID	Request Node Identification Data
7900000	RLIR	Registered Link Incident Record
7A000000	LIRR	Link Incident Record Registration
7B000000- FF000000	Unused	
11010000	LISM	Select Master
11020000	LIFA	Fabric Assigned
11030000	LIPA	Previously Acquired
11040000	LIHA	Hard Assigned

ELS Command	Code	Description
11050000	LISA0	Soft Assigned (old)
11050100	LISA1	Soft Assigned (new)
11060000	LIRP	Report Position
11070000	LILP	Loop Position

Table 16-26 ELS Command Code (Continued)

FC-PH - Reject Reason Codes and Explanations

Refer to "Switch Fabric Internal Link Services (SW_ILS)" Reject Frame Reason and Explanation Codes for a complete list.

The following codes provide reasons for switch rejections.

FC-PH Reject Reason Code

Table 16-27	FC-PH Reject Reason	Code
-------------	---------------------	------

Reason Code	Description
01	Invalid ELS Command Code – the command code is not recognized by the recipient.
02	Invalid revision level. The recipient does not support the specified revision level.
03	Logical Error – The request identified by the command code and the payload content is invalid or logically inconsistent for the conditions present.
04	Invalid payload size – The size of the payload is inconsistent with the command code and/ or any length fields in the payload.
05	Logical Busy – the port is unable to perform the request at this time.
	Busy reason explanation code:
	01 – PHYSICAL_N_PORT_BUSY
	03 – N_PORT_RESOURCE_BUSY
07	Protocol Error – an error has been detected that violates FC-2 protocols and is not covered by another reason code.
09	Unable to perform command request – the recipient is unable to perform the request at this time.
0B	Command not supported – the recipient does not support the ELS command.
Others	Reserved
FF	Vendor-unique field indicating an error condition.

- F_JRT information relates to the F_Port
- P_RJT information relates to the N_Port

Table 16-28	FC-PH Reject Reason Explanation Codes

Code	Description	Explanation N/A		
0x00	NO_ADDITIONAL_EXPLANATION			
0x01	INVALID_D_ID	F_RJT - the Fabric is unable to locate the destination N_Port address.		
		P_RJT - the N_Port which received this frame does not recognize the D_ID as its own Identifier.		
0x02	INVALID_S_ID	F_RJT - the S_ID does not match the N_Port Identifier assigned by the Fabric.		
		P_RJT - the destination N_Port does not recognize the S_ID as valid.		
0x03	NOT_AVAIL_TEMP	F_RJT - The N_Port specified by the D_DID is a valid destination address, but the N_Port is not functionally available. For example, the N_Port is online and may be performing a Link Recovery Protocol.		
0x04	NOT_AVAIL_PERM	F_RJT - The N_Port specified by the D_ID is a valid destination address, but the N_Port is not functionally available. The N_Port is offline, or powered down.		
0x05	CLASS_NOT_SUPPORTED	F_RJT or P_RJT - The Class of Service (COS) specified by the Start of Frame (SOF) delimiter of the frame being rejected is not supported.		
0x06	DELIMITER_ERROR	Deliminator usage error.		
		F_RJT or P_RJT - The Start of Frame (SOF) or End of Frame (EOF) is not appropriate for the current conditions. For example, a frame started by SOFc1 is received while a Class 1 Dedicated Connection already exists with the same N_Port.		
0x07	TYPE_NOT_SUPPORTED	F_RJT or P_RJT - The TYPE field of th frame being rejected is not supported by the Port replying with the Reject frame.		

Code	Description	Explanation
0x08	INVALID_LINK_CONTROL	P_RJT - The command specified in the Information Category bits within R_CTL field in the frame being rejected is invalid or not supported as a Link_Control frame.
0x09	INVALID_R_CTL	P_RJT - The R_CTL field is invalid or inconsistent with the other Frame Header fields or conditions present.
0x0a	INVALID_F_CTL	P_RJT - The F_CTL field is invalid or inconsistent with the other Frame_Header field or conditions present.
0x0b	INVALID_OX_ID	P_RJT - The OX_ID specified is invalid, or inconsistent with the other Frame_Header field or conditions present.
0x0c	INVALID_RX_ID P_RJT - The RX_ID specified is or inconsistent with the other Frame_Header field or condition present.	
0x0d	INVALID_SEQ_ID	P_RJT - The SEQ_ID specified is invalid, or inconsistent with the other Frame_Header field or conditions present.
0x0e	INVALID_DF_CTL	P_RJT - The DF_CTL field is invalid.
0x0f	INVALID_SEQ_CNT	P_RJT - The SEQ_CNT specified is invalid, or inconsistent with the other Frame_Header field or conditions present. A SEQ_CNT reject is not used to indicate out of order or missing data frames.
0x10	INVALID_PARAMETER P_RJT - The Parameter field is incorrectly specified, or invalid.	
0x11	EXCHANGE_ERROR P_RJT - An error has been detected Identified Exchange (OX_ID). This indicate Data frame transmission w Sequence Initiative or other logical in handling an Exchange.	
0x12	PROTOCOL_ERROR	P_RJT - This reject code indicates that an error has been detected that violates the rules of FC-2 signaling protocol, which are not specified by other error codes.
0x13	INCORRECT_LENGTH	F_RJT or P_RJT - The frame being rejected is an incorrect length for the conditions present.

 Table 16-28
 FC-PH Reject Reason Explanation Codes (Continued)

Code	Description	Explanation		
0x14	Unexpected_ACK	P_RJT - An ACK was received from an unexpected S_ID. The ACK received was not for an Open Sequence or Exchange, but was received from a connected N_Port.		
0x15	Reserved			
0x16	Login_Required	F_RJT or P_RJT - An exchange is being initiated before the interchange of Service Parameters (i.e. Login) has been performed. F_RJT may be issued by the Fabric in order to notify an N_Port that a Login with the Fabric is required due to changes within the Fabric. F_RJT shall not be issued by the Fabric in order to convey Login status of a destination N_Port.		
0x17	Excessive_Sequences_Attempted	P_RJT - A new Sequence was initiated by an N_Port which exceeded the capability of the Sequence Recipient as specified in the Service Parameters during Login.		
0x18	Unable_to Establish_Exchange	P_RJT - A new Exchange was initiated by an N_Port, which exceeded the capability of the Responder facilities.		
0x19	Expiration_Security_Header not supported.	P_RJT - The N_Port does not support the optional Expiration_Security_Header.		
0x1a	Fabric_Path_Not_Avail	F_RJT - The speed of the source and destination N_Ports does not match. Other Fabric characteristics related to multiple Fabric domains may also use thi reason code.		
0x1b	Vendor Unique Error	F_RJT or P_RJT - The Vendor Unique Reject bits (bits 7 - 0) are used by specific vendors to specify additional reason codes.		
0x1c	Reserved	N/A		

 Table 16-28
 FC-PH Reject Reason Explanation Codes (Continued)

ELS Examples

ELS Example 1

v3.x Output

time	task	event	port	cmd	args
<pre>1. 22:55:51.199 2. 22:55:51.199</pre>	-				220alcef,00fffc0a,013effff,05000000,10d0d930 23fffc0a,000alcef,013effff,02000000,10ca5ae0

Line 1.

22:55:51.199 tFcp Tx3 12 16 220alcef,00fffc0a,013effff,05000000,10d0d930

Argument 1	Argument 2	Argument 3	Argument 4	Argument 5
22 "Routing Control Bits - R_CTL Diagram," on page 16-20	00 =	013e "Originator_ID (OX_ID)," on page 16-23	05000000 (log out) "ELS Command Code," on page 16-47	10d0d930 IU address pointer (not available in v4.x). Refer to "About the IU Pointer," on page 16-18.
0a1cef "Destination_I D (D_ID)," on page 16-21	fffc0a "Source_ID (S_ID)," on page 16-21	ffff "Responder_ID (RX_ID)," on page 16-23		

Table 16-29 ELS Arg Explanation (Line 1)

Line 2

22:55:51.199 tReceive Rx3 12 4 23fffc0a,000alcef,013effff,02000000,10ca5ae0

Table 16-30 ELS Arg Explanation (Line 2)

Argument 1	Argument 2	Argument 3	Argument 4	Argument 5
23 (response) "Routing Control Bits - R_CTL Diagram," on page 16-20	00 = Identifier	013e "Originator_I D (OX_ID)," on page 16-23	05000000 (log out) "ELS Command Code," on page 16-47	10d0d930 IU address pointer (not available in v4.x). Refer to "About the IU Pointer," on
fffc0a "Destination_ID (D_ID)," on page 16-21	Destination_ID D_ID)," on (S_ID)," on "Responder_I D_RX_ID),"			page 16-18.

ELS Example 2

In the following example, the embedded port ffffc0a sends an ELS request to logout from the device 0alcef. Device 0alcef accepts the request.

This example shows an FLOGI frame to the fabric F_port (R_CTL=0x22, ELS Request; D_ID=0xfffffe, fabric F_port; S_ID=0x000000). S_ID = 0 indicates that the attaching device does not yet have a fabric address.

```
12:32:53.583 tReceive Rx3 0 116 22fffffe,00000000,000cffff,04000000
```

```
0x22 = R_CTL - Extended Link Services Request
0xffffe = Fabric F_port
0x000000 = S_ID (attaching device does not yet have a fabric address)
```

ELS Example 3

The following example shows how the FLOGI from the switch to the device (R_CTL=0x23, Extended Link Services Reply; D_ID=0xd31100, fabric F_port; S_ID=0xfffffe) is accepted. D_ID=0xd31100 is the assignment of the fabric address.

```
12:23:12.049 tReceive scn 1 6

12:23:12.049 tFspf ioctl 1 dd 10129da0,0*2

12:23:12.049 tFspf ioctl 1 ac 0,0

12:23:12.049 tFspf ioctl 1 aa ffffff,10

12:23:12.049 tFspf ioctl 16 aa ffffff,1

12:23:12.049 tFspf ioctl 1 ad 0,0

12:23:12.049 tFspf ioctl 1 92 101f466c,0

12:23:12.049 tFspf Tx3 1 116 23d31100,00fffffe,02220185,02000000
```

0x23 = Extended Link Services Reply (R_CTL)
0xd31100 = D_ID fabric F_port
00fffffe = the S_ID)
0xd31100 = D_ID is the assignment of the Fabric address.

Switch Fabric Internal Link Services (SW_ILS)

About Internal Link Services (ILS)

Internal Link Services refers to the service that allows a switch to communicate with itself. A Domain Controller (or embedded port) communicates to receive updated information.

When a **portlogdump** shows a Well Known Address communicating to another Well Know Address, such as FFFD to FFFD, or FFFCxx to FFFCxx (xx being the domain ID), refer to ILS for information about that communication. See "SW_ILS Examples," on page 16-59.

The SW_ILS section includes the following areas:

- "SW ILS Command Codes"
- "Zoning Codes (NZ)"

16

• "FSS Messages"

SW_ILS Command Codes

Table 16-31	Switch Fabric Internal Link Services Command Codes
-------------	--

Value	Code	Description
0x01000000	IE_RJT	Reject
0x 02000000	IE_ACC	Inter Exchange Accept
0x 03000000	IE_ELOGI	Inter Exchange Element Login
0x 04000000	IE_LOGI	Inter Exchange Inter-Element Login
0x 05000000	IE_ELOGO	Inter Exchange Element Logout
0x 06000000	IE_LOGO	Inter Exchange Inter-Element Logout
0x 07000000	IE_DSP	Inter Exchange Distribute Service Parameters
0x 08000000	IE_VN	Inter Exchange Validate Name
0x 10000000	IE_ELP	Inter Exchange Exchange Link Parameters
0x11000000	IE_EFP	Inter Exchange Fabric Parameters
0x 12000000	IE_DIA	Inter Exchange Domain Identifier Assigned
0x 13000000	IE_RDI	Inter Exchange Request Domain ID
0x 17000000	IE_BF	Inter Exchange Build Fabric
0x 18000000	IE_RCF	Inter Exchange Reconfigure Fabric
Brocade-Specifi	c Command Codes	
0x 14000000	IE_HLO	Routing: Hello
0x 15000000	IE_LSU	Routing: Link State Update
0x 16000000	IE_LSA	Routing: Link State Ack
0x 19000000	IE_GAID	Get Alias ID
0x 1a000000	IE_RAID	Return Alias ID
0x 1b000000	IE_RSCN	Inter-switch RSCN
0x 1c000000	IE_INQ	Inquiry
0x 1d000000	IE_RTE	Interswitch Routing information
0x 1E000000	DRLIR	Disconnect Class 1 Connection
0x 20000000	DSCN	Disconnect Class 1 Connection
0x 21000000	LOOPD	Detect Queued Class 1 Connection Request Deadlock
0x 22000000	MR	Merge Request
0x 23000000	ACA	Acquire Change Authorization
0x 24000000	RCA	Release Change Authorization
0x 25000000	SFC	Stage Fabric Configuration

Value	Code	Description	
0x 26000000	UFC	Update Fabric Configuration	
0x 3000xxxx	ESC	Exchange Switch Capabilities	
0x70000000	IE_ZONE	Inter Exchange Zone Update (Vendor Unique)	
0x71000000	IE_SGROUP	Inter Exchange Group wise commands	
0x72000000	IE_SEC	Inter Exchange Security entry	
0x73000000	IE_SLAPRequest	Inter Exchange SLAP Request	
0x74000000	IE_SLAPAcknowledge	Inter Exchange SLAP Acknowledge	
0x75000000	IE_SLAPConfirm	Inter Exchange SLAP Confirm	
0x76000000	IE_SLAPDone	Inter Exchange SLAP Done	
0x77000000	IE_SLAPReject	Inter Exchange SLAP Reject	
0x78000000	IE_RCS_INFO	Inter Exchange Reliable commit service info	
0x79000000	IE_RCS_ACA	Inter Exchange RCS Acquire Change Authorization	
0x7a000000	IE_RCS_SFC	Inter Exchange RCS Stage Fabric Config	
0x7b000000	IE_RCS_UFC	Inter Exchange RCS Update Fabric Config	
0x7c000000	IE_RCS_RCA	Inter Exchange RCS Release Change Authorization	
0x7d000000	IE_RCS_TCO	Inter Exchange RCS Transfer Commit Ownership	
0x7e000000	IE_RDTS	Inter Exchange RDTS Request	
0x7f00000	IE_ECP	Inter Exchange Exchange credit parameters request	
Trunking Support	rt Code		
0x90000000	IE_EMT	Inter Exchange Read MARK timestamp(VU)	
0x91000000	IE_ETP	Inter Exchange Exchange trunking parameter	
External Link Se	ervices	· ·	
0x81000000	SW_RJT	Reject	
0x82000000	SW_ACC	Accept	
0x83000000	SW_CFN	Change Fabric Name	

Write Timeout Value

Offline Notification

Table 16-31 Switch Fabric Internal Link Services Command Codes (Continued)

SW_ILS Reject Reason Codes (SW_RJT)

٠ To view a reject frame, refer to "SW_ILS Reject Frame," on page 16-123

SW_WTV

SW ON

0x84000000

0x850000

• To view a reject example, refer to "SW_ILS Reject Example," on page 16-63

Value	Code	Description	
0x01	SW_INVALID_COMMAND	Invalid ELS Command Code – the command code is not recognized by the recipient.	
0x02	SW_INVALID_VERSION	Invalid revision level. The recipient does not support the specified revision level.	
0x03	SW_LOGICAL_ERROR	Logical Error – The request identified by the command code and the payload content is invalid or logically inconsistent for the conditions preserved.	
0x04	SW_INVALID_IU_SIZE	Invalid payload size – The size of the payload is inconsistent with the command code and/or any length fields in the payload.	
0x05	SW_LOGICAL_BUSY	Logical Busy – the port is unable to perform the request at this time.Busy reason explanation code:	
		01 – PHYSICAL_N_PORT_BUSY	
		03 – N_PORT_RESOURCE_BUSY	
0x07	SW_PROTOCOL_ERROR	Protocol Error – an error has been detected that violates FC-2 protocols and is not covered by another reason code.	
0x09	SW_CANT_PERFORM_REQ	Unable to perform command request – the recipient is unable to perform the request at this time.	
0x0b	SW_NOT_SUPPORTED	Command not supported – the recipient does not support the ELS command.	
Other value		Reserved	
0xff	SW_VENDOR_UNIQUE	Vendor-unique field indicates an error condition.	

Table 16-32 FC_SW: Reject Reason Codes (SW_RJT)

16-58

FC-SW (SW-RJT) Reject Reason Explanation Codes

Value	Code	Explanation
0x00	SW_NO_EXPLANATION	No additional explanation
0x01	SW_CLASS_F_ERROR	Class F Service Parameter error
0x03	SW_CLASS_N_ERROR	Class N Service Parameter error
0x04	SW_UNKNOWN_CTL_MODE	Unknown Flow Control code
0x05	SW_UNKNOWN_CTL_PARAMS	Invalid Flow Control Parameters
0x0d	SW_INVALID_PORT_NAME	Invalid port name
0x0e	SW_INVALID_SWITCH_NAME	Invalid switch name
0x0f	SW_TOV_MISMATCH	R_A_TOV or E_D_TOV mismatch
0x10	SW_INVALID_DLIST	Invalid Domain_ID_List
0x19	SW_COMMAND_IN_PROGRESS	Command already in progress
0x29	SW_NO_MORE_RESOURCES	Insufficient resources available
0x2a	SW_NO_DOMAIN_ID	Domain_ID not available
0x2b	SW_INVALID_DOMAIN_ID	Invalid Domain ID
0x2c	SW_NON_SUPPORTED_REQ	Request not supported
0x2d	SW_NO_LINK_PARAMETERS	Link Parameters not yet established
0x2e	SW_NO_CONT_DOMAIN_IDS	Requested Domain_IDs not available
0x2f	SW_EPORT_ISOLATED	E_Port is Isolated
0x30	SW_CANT_TRUNK	Cannot trunk
0x3a	SW_EPORT_DISABLED	E port disabled
0x3b	SW_SLAP_NOTDONE	Slap not done
0x3c	SW_RDTS_NOTDONE	Zoning is not done
0x3d	SW_RDTS_NOTDONE	RDTS not done

Table 16-33 FC-SW (SW-RJT): Reject Reason Explanation Codes

SW_ILS Examples

The following ILS examples are explained in the following way:

- The first section (labeled **Example**) shows the whole example, and the subsequent sections are broken up line by line.
- Also, click on any colored link to go to related information.

For a text description of the events displayed in this example, refer to the Example Summary at the end of the example.

Example

time	task even	t port	cmd	args	
1. 00:44:26.599 2. 00:44:26.599	- ··· -	8 8	40 0	02fffffd,00fffffd,0284ffff,14000000,10cac760 c0fffffd,00fffffd,028400fb, ,10cab4d0	

Output Line 1

```
00:44:26.599 tFspf Tx 8 40 02fffffd,00fffffd,0284ffff,14000000,10cac760
```

Arg 1 02ffffd	Arg 2 00ffffd	Arg 3 0284ffff	Arg 4 14000000	Arg 5 10cac760
02 = RC_CTL (request)	00 = Identifier	0284 = OX_ID	14000000 = SW_ILS command code (routing	10cac760 = IU address pointer
fffffd = D_ID (Fabric controller)	ffffd = S_ID (Fabric controller)	ffff=RX_ID	Hello). "SW_ILS Command Codes," on page 16-56	

 Table 16-34
 Argument Break Down for Example (Line 1)

Output Line 2

00:44:26.599 tReceiv	e Rx	8 0	c0fffffd,00fffffd,028400fb,	,10cab4d0
----------------------	------	-----	-----------------------------	-----------

Table 10-33 Algument Dieakuowinioi Lample (Line 2)	Table 16-35	Argument Breakdown for Example (Line 2)
--	-------------	---

Arg 1 c0fffffd	Arg 2 00fffffd	Arg 3 028400fb	Arg 4 Null	Arg 5 10cab4d0
CO = RC_CTL (Link control acknowledged)	00 = Identifier	0284 = OX_ID	null = SW_ILS command code	10cab4d0 = IU address pointer (not available in v4.x). Refer to
ffffff = D_ID (Fabric controller)	ffffd = S_ID (Fabric controller)	oofb = RX_ID		"About the IU Pointer," on page 16-18.

Example Summary

The Fabric Controller from one switch sends a handshake "hello" to the other Fabric Controller. The handshake is acknowledged.

Trunking Frame Example

Example

```
      22:33:38.283
      tFabric
      Tx
      3
      84
      02fffffd,00fffffd,02ceffff,9000005

      22:33:38.283
      tReceive
      Rx
      3
      0
      c0ffffd,00fffffd,02ce0089, ,10cblc40

      22:33:38.283
      tReceive
      Rx
      3
      84
      03ffffd,00fffffd,02ce0089, ,10cblc40

      22:33:38.283
      tReceive
      Rx
      3
      84
      03ffffd,00fffffd,02ce0089, 0200050,10cb2510

      22:33:38.283
      tTransmit
      Tx
      3
      0
      c0ffffd,00ffffd,02ce0089, ,10cb2510
```

Output Line 1

22:33:38.283	tFabric	Tx	3	84	02fffffd,00fffffd,02ceffff,9000005
--------------	---------	----	---	----	------------------------------------

Arg 1 02ffffd	Arg 2 00fffffd	Arg 3 02ceffff	Arg 4 9000005
02 = RC_CTL (request)	00 = Identifier	02ce = OX_ID	9000005 = Trunking IU Preamble
fffffd =	fffffd =	ffff =	
D_ID	S_ID	RX_ID	

 Table 16-36
 Argument Breakdown for Example (Line 1)

Output Line 2

```
22:33:38.283 tReceive Rx 3 0 c0fffffd,00fffffd,02ce0089, ,10cb1c40
```

Table 16-37 Argument Breakdown for Example (Line 2)

Arg 1 c0fffffd	Arg 2 00fffffd	Arg 3 02ce0089	Arg 4	Arg 5 10cb1c40
CO = RC_CTL (Link control acknowledged)	00 = Identifier	02ce = OX_ID	null	10cb1c40 = IU address pointer
fffffd = D_ID	fffffd = S_ID	ffff = RX_ID		

Output Line 3

22:33:38.283 tReceive Rx 3 84 03fffffd,00fffffd,02ce0089,02000050,10cb2510510

Arg losffffd	Arg 2 00fffffd	Arg 3 02ce0089	Arg 4 02000050	Arg 5 10cb2510510
03 = RC_CTL (reply)	00 = Identifier	02ce = OX_ID	02 = (Accept)	10cb2510 = IU address pointer
fffffd = D_ID (Fabric controller)	fffffd = S_ID (Fabric controller)	0089 = RX_ID	000050 =	

 Table 16-38
 Argument Breakdown for Example (Line 3)

Output Line 4

```
22:33:38.283 tTransmit Tx 3 0 c0fffffd,00fffffd,02ce0089, ,10cb2510
```

 Table 16-39
 Argument Breakdown for Example (Line 4)

Arg 1 c0fffffd	Arg 2 00ffffd	Arg 3 02ce0089	Arg 4	Arg 5 10cb2510
0c = RC_CTL (link control acknowledge)	00 = Identifier	02ce = OX_ID	null	10cb2510 = IU address pointer
fffffd = D_ID (Fabric controller)	fffffd = S_ID (Fabric controller)	0089 = RX_ID		

Example Summary

The Fabric Controller on one switch sends a trunking stamp to the other switch's Fabric controller. The Request is acknowledged and accepted.

NSD Example

Example

16:09:052.553 nsd rscn 0fffc09 00fffc0a, 1b000000, 500a1f00,000000001

General Information:

R_CTL	= 02 for all request frames, and 03 for all reply frames
CS_CTL	= 00. Otherwise see IU_Status codes
D_ID and S_ID domain ID).	= Set as indicated for the specific SW_ILS, FFFFFD or FFFCxx (FFFCxx, xx=

Example Summary

The example above shows S_ID domain controller (fffc0a) talking to D_ID domain controller (fffc09); they are communicating Brocade Specific Interswitch RSCN code (refer to "Brocade-Specific Code," on page 16-33).

16

SW_ILS Reject Example

The following example focuses mainly on reading the areas that affect the reject response.

Example

11:01:10.716	tFspf	Tx	2	40	02fffffd,00fffffd,01abffff,14000000,11cdde90
11:01:10.949	tShell	ioctl	2	dd	101f24c0,0* 2
11:01:11.916	tShell	ioctl	3	dd	101f24c0,0* 2
11:01:12.499	tReceive	Rx3	2	0	81140500,00240300,074bffff, ,11cd35a0
11:01:12.499	tReceive	reject	2		16
11.01.12.499	LRECEIVE	reject	2		ΤO

 Table 16-40
 SW_ILS Reject Example Descriptions

Entry	Description	Cross-Reference
tFspf	A fibre channel shortest path first (fsfp) routing Task.	Refer to "Task," on page 16-12.
14000000	An ILS (hello) transmission.	Refer to "Switch Fabric Internal Link Services (SW_ILS)," on page 16-54.
tShell	A Shell Task, which is a A telnet task that starts up a shell in VX works.	Refer to "Task Descriptions," on page 16-13.
ioctl	An I/O Control event.	Refer to "I/O Control (ioctl)," on page 16-36.
f2	Specific IOCTL code that displays the number of filter hit count.	Refer to "IOCTL CTL Code," on page 16-37.
reject	Reject event.	Refer to "FC_SW: Reject Reason Codes (SW_RJT)," on page 16-58 and "FC- SW (SW-RJT): Reject Reason Explanation Codes," on page 16-59

Zoning Codes (NZ)

Zoning Request Codes

Value	Code	Description
0x22000000	IE_NZ_MR	
0x23000000	IE_NZ_ACA	
0x24000000	IE_NZ_RCA	
0x25000000	IE_NZ_SFC	
0x26000000	IE_NZ_UFC	

 Table 16-41
 Zoning Request Codes for Zoning Exchange .

Value	Code	Description
0x70000000	IE_ZONE	Zone Update (Vendor Unique)
0x71000000	IE_SGROUP	Group wise commands
0x72000000	IE_SEC	Security entry
0x73000000	IE_SLAPRequest	SLAP Request
0x74000000	IE_SLAPAcknowledge	SLAP Acknowledge
0x75000000	IE_SLAPConfirm	SLAP Confirm
0x76000000	IE_SLAPDone	SLAP Done
0x77000000	IE_SLAPReject	SLAP Reject
0x78000000	IE_RCS_INFO	Reliable commit service info
0x79000000	IE_RCS_ACA	RCS Acquire Change Authorization
0x7a000000	IE_RCS_SFC	RCS Stage Fabric Config
0x7b000000	IE_RCS_UFC	RCS Update Fabric Config
0x7c000000	IE_RCS_RCA	RCS Release Change Authorization
0x7d000000	IE_RCS_TCO	RCS Transfer Commit Ownership
0x7e000000	IE_RDTS	RDTS Request
0x7f000000	IE_ECP	Exchange credit parameters request
Trunking sup	port code	
0x90000000	IE_EMT	Read MARK timestamp(VU)
0x91000000	IE_ETP	Exchange trunking parameter
External Link S	Services	•
0x81000000	SW_RJT	Reject
0x82000000	SW_ACC	Accept
0x83000000	SW_CFN	Change Fabric Name
0x84000000	SW_WTV	Write Timeout Value
0x85000000	SW_ON	Offline Notification

 Table 16-41
 Zoning Request Codes for Zoning Exchange (Continued).

Zoning Request/Response Codes

Code	Description
0x00	NZ_SUCCESSFUL
0x01	NZ_FABRIC_BUSY
0x02	NZ_FAILED
(0 - 100)	NZ_ERROR_BASE

 Table 16-42
 Zoning Request Response Codes

Zoning Reason Codes

Table 16-43	Zoning Reason Codes
-------------	---------------------

Code	Reason
0x00	NZ_NO_REASON
0x01	NZ_INVALID_DATA_LEN
0x02	NZ_UNSUPPORTED_CMD
0x04	NZ_NOT_AUTHORIZED
0x05	NZ_INVALID_REQUEST
0x06	NZ_FABRIC_CHANGING
0x07	NZ_UPDATE_NOT_STAGED
0x09	NZ_INVALID_DATA
0x0a	NZ_CANNOT_MERGE
0x0b	ZONING_NO_LICENSE

TZone Request Code

TZone - New Zoning SFC Request's Operation Request Values.

R_CTL = 22 and 22 Payload word 0 = zoning request value

Zoning Request Value	Description
0x03	NZ_ACTIVATE_ZONESET
0x04	NZ_DEACTIVATE_ZONESET
0xF0	NZ_SAVE_FULLZONESET
Vendor-unique fabric configuration server (FCS) request operation code used for saving configuration without activating or deactivating.	

 Table 16-44
 TZone - New Zoning SFC Request's Operation Request Values.

Zoning Transaction Abort Reason Codes

Code	Description
0xa0	ERR_ZONE_MERGE_RECEIVED
0xa1	ERR_ZONE_CONFIG_CHANGE
0xa2	ERR_ZONE_BAD_CONFIG
0xa3	ERR_ZONE_OP_FAILED
0xa4	ERR_ZONE_CANNOT_START_TRANSACTION
0xa5	ERR_ZONE_SHELL_EXITED
0xa6	ERR_ZONE_NOT_OWNER
0xa7	ERR_ZONE_VALIDATION_FAILED

 Table 16-45
 Zoning Transaction Abort Reason Codes

Zoning Specific Opcode

SW_ILS (0x7f) ENT_MEMBER - Type of Zoning Members

 Table 16-46
 Specific Opcode

SW_ILS (0x7f) ENT_MEMBER - Type of Zoning Members					
0x01	PORT	Entry describes physical port			
0x02	ENT_WWN	Entry describes WWN			
0x04	ENT_BMAP	Entry describes al_pa bitmap			
0x08	ENT_NAME	Entry describes a name			
SW_ILS (0x80)	SW_ILS (0x80) "ENT_LUN" – LUN information in entry_t valid				
0x01	ENT_TARGET	e_devType is TARGET			
0x02	ENT_INITIATOR	e_devType is INITIATOR			

Zone Configuration Operations Code

Code (hex)	Operation	Description
00000001	CREATE	Create an object
00000002	DELETE	Delete an object
00000003	ADD	Add a member to an object
00000004	REMOVE	Remove a member from an object
00000005	CLEAR	Clear all objects
00000006	DISABLE	Disable configuration
0000007	ENABLE	Enable configuration
0000008	SAVE	Save in flash memory
00000009	MERGE	Merge two configurations
0000000A	REMOTE	Lookup ID on remote switch
0000000B	CHECK	Checksum configuration
00000015	TRANS_DISABLE	
00000016	TRANS_ENABLE	
00000017	TRANS_SAVE	
00000064	ZONE_VERSION	

 Table 16-47
 Configuration Operations

Zone Object Types Code

Code (hex)	Description
00	Name Zoning
01	Zone set (Cfg)
02	Zone
03	Zone Alias
04	QLP
05	Cfg_end
06	IPO
08	Enable_cfg
09	Active_cfg

Zone Error (tzone- reject) Code

Table 16-49	Zone err	or (tzone-	reject) Code
-------------	----------	------------	--------------

Decimal	Abbr.	Description
0	NOERROR	Generic - no error
1	NOMEMORY	Generic malloc failure
2	ZONE RULE CHECK	No zoning rule violation
	ERROR CODE EZACCEPT	
3	EZBADPORT	Non-existent port number
4	FCTYPEMIX	Specific FC type and wildcard mix
5	ERSINGLEDEV	More than one dev when LUN presents
6	EZLUNMIX	Mixture of devices w/ and w/o LUN at the same port
7	EZMENMIX	Mix of port and WWN zone members
8	EZHARDSOFTMIX	Mix of hard and soft zones
9	EZFAQLMIX,	Mixing hard zoning with FA or QL zone
А	EZLUNMENMIX	Mix of QQQ
В	ZONE TYPE	Soft zoning - no need for ZT
	MANAGEMENT ERROR	
	CODE ZT_SOFTZONE	
C	ZT_FABASSIST	FA zone - no need for ZT
Е	ZT_DRIVERERR	Driver returns error
F	ZG_NO_MORE_CAM	No more CAM entry in port driver
10	ZCHECKBADWWN	Zone check bad WWN authentication
11	WWN_IN_PORTZONE	WWN device in hard PORT zone
12	OFFSET_MASK_FULL	No offset register available
13	PORT_EPORT	Port is an E-port

Zone Example

FC-4 Type Device Data - Zoning Request

Example

```
      22:48:10.633 tReceive
      Rx 8 4
      02fffc0b,00fffc0a,0053ffff,70846400,10d065f0

      22:48:10.633 tTransmit
      Tx 8 0
      c0fffc0a,00fffc0b,00530235, 10d065f0

      22:48:10.633 tSwitch
      Tx 8 4
      03fffc0a,00fffc0b,00530235,02840000,10d065f0

      22:48:10.633 tReceive
      Rx 8 0
      c0fffc0b,00fffc0a,00530235,10d065f0
```

Output Line 1:

22:48:10.633 tReceive Rx 8 4 02fffc0b,00fffc0a,0053ffff,70846400,10d065f0

Arg 1	Arg 2	Arg 3	Arg 4	Arg 5
02fffc0b	00fffc0a	0053ffff	70846400	10d065f0
o2 = RC_CTL (request)	00 = Identifier	0053 = OX_ID	Zoning IU Preamble: 70 = IE_ELSCode (zoning)	10d065£0 = IU address pointer
fffc0b = D_ID	fffc0a = S_ID	ffff = RX_ID	 84 = New zoning revision (>2.3v firmware) 00 = Zone Object Type (Name zoning) 	

 Table 16-50
 Breakdown of Arg Fields in Output (Line 1)

Output Line 2:

22:48:10.633 tTransmit Tx 8 0 c0fffc0a,00fffc0b,00530235, ,10d065f0

Arg 1	Arg 2	Arg 3	Arg 4	Arg 5
c0fffc0a	00fffc0b	00530235		10d065f0
$c0 = RC_CTL$	00 =	0053 =	SW_ILS	10d065f0 =
(Link control acknowledge)	Identifier	OX_ID	command code = null	IU address pointer
fffc0a =	fffc0b =	0235 =		1
D_ID	S_ID	RX_ID		

 Table 16-51
 Breakdown of Arg Fields in Output (Line 2)

Output Line 3:

22:48:10.633 tSwitch Tx 8 4 03fffc0a,00fffc0b,00530235,02840000,10d065f0

Table 16-52 Breakdown of Arg Fields in Output (Li	ne 3)
---	-------

Arg 1	Arg 2	Arg 3	Arg 4	Arg 5
03fffc0a	00fffc0b	00530235	02840000	10d065f0
03 = RC_CTL (reply)	00 = Identifier	00530 = OX_ID	02 = Zoning IU preamble (accept)	10d065f0 = IU address pointer
fffc0a = D_ID	<pre>fffc0b = S_ID</pre>	0235 = RX_ID	84 = New zoning revision (>2.3v firmware)	

.Output Line 4:

22:48:10.633 tReceive Rx 8 0 c0fffc0b,00fffc0a,00530235, ,10d065f0

Arg 1	Arg 2	Arg 3	Arg 4	Arg 5
c0fffc0b	00fffc0a	00530235		10d065f0
c0 = RC_CTL (Link control acknowledge)	00 = Identifier	0053 = OX_ID	SW_ISL command code = null	10d065f0 = IU address pointer
fffc0b =	fffc0a =	0235 =		
D_ID	S_ID	RX_ID		

 Table 16-53
 Breakdown of Arg Fields in Output (Line 4)

Example Summary:

Embedded port fffc0a sends zoning code 70 request to other embedded port fffc0b. Embedded port fffc0b sends a link control acknowledgment.

About FSS

Fabric OS State Synchronization (FSS). The primary function of FSS is to deliver State Update messages from ACTIVE components to their peer STANDBY components. FSS determines if fabric elements are synchronized (and thus FSS "compliant").

A Fabric OS switch-service is composed of a set of components, which is either a user-space service daemon or kernel-space driver with a symbolic name to identify its function inside the switch service and the instance number of switch that the component is operating on.

FSS monitors the Fabric OS elements (asic driver, ns, zone, web, fabric, fspf, ms, ps.....) and reports them either FSS compliant or not FSS compliant. A Fabric Service is deemed fault resilient (or FSS compliant) if the complete set of its components are operating in an active standby mode, and the state replication is carried out from the active components to their corresponding standbys.

To learn to read an FSS entry in the portlogdump, refer to "FSS Example," on page 16-74.

FSS Fields in the portlogdump

Each line of FSS output in the portlogdump consists of:

Time	Task	Event	Port	Cmd	Arg
Displays time of event	Always FSSK	Can be msg, event, or cmd. Refer to page 16-71.	Always "0" (FSS is related to CPs, not ports).	0 = Sent, or Transmitted (TX). 1 = Received	Arg1 = service ID and component ID. Refer to page 16-73.
				(RX).	Arg2 = send/ receive operation data.
					Arg3 = Optional Flags
					Arg4 = a text description. Refer to page 16-71.

Table 16-54 FSS Field Descriptions

FSS Messages

The information below refers to the relationship between the event column and the final entry of the Arg column. Use the table below to decode a specific Event and Arg entry.

time	task	event	port cm	d args
21:54:04.763	FSSK	event	0	 0 00000000,000000000,00000005, TRAC

Table 16-55	FSS Messages
-------------	--------------

Event Type	Code/ 4th Arg	Description
msg	EXCH	Broadcast message exchange well- know address
msg	UPDA	Message state update.
msg	ACK	Message - state acknowledgment.
msg	STAR	Message - sync started.
msg	STOP	Message - sync stopped.
msg	RECO	Message - recover.
msg	YIEL	Message -
msg	NONE	Message - no message.
msg	TAKE	Message - Standby take control.
msg	TEST	Message - Test Point.
event	STAR	Sync start event.
event	UPCO	Up connection event.

Table 16-55 FSS Messages				
Event Type	Code/ 4th Arg	Description		
event	DOWN	Down connection event.		
event	COMP	Image complete event.		
event	INCO	Incomplete incomplete event.		
event	DUMP	A dump is ready.		
event	NONE	No event occurred.		
event	SYNC	Sync success event.		
event	FAIL	Sync failure event.		
event	STOP	Sync stopped.		
event	RECO	The recovery failed.		
event	TAKE	A take control event occurred.		
event	YIEL	A yield control event occurred.		
event	MISM	A mismatch event occurred.		
event	UPDA	A state update event occurred.		
event	ACTI	Event reported. The active CP is ready.		
event	STAN	Event reported. The standby CP is ready.		
event	TXQH	Event reported. Transmissions are high.		
event	RXQH	Event reported. Receptions are high.		
event	MISS	Event reported. A service is missing.		
event	AVAI	Event reported. Service is available.		
event	TRAC	A trace of events was run.		
cmd	NONE	No command.		
cmd	STAR	The sync started.		
cmd	STOP	The sync stopped.		
cmd	YIEL	Yield control.		
cmd	TAKE	Take Control.		
cmd	RESE	Reset.		
cmd	FREE	Freeze.		
cmd	UNFR	Unfreeze.		
cmd	UPDA	State update.		
cmd	CONN	Connect.		

FSSk Service Identification

The Service ID is displayed in the first 4 bits of Arg1.

21:54:04.882 FSSK event 0 0 00020000,00000000,0000000,UPCO

The Service ID can be viewed by running the hadump command.

Example Output From the hadump command

```
=== FSS Service Dump : fcsw0 ===
== State ==
fcsw0(2): ACTIVE(0), Required-----> **service ID 2
local = IMG_COMP, prev = IMG_NONE, peer = IMG_NONE
Name Local Remote
fcsw0(M) IMG_COMP IMG_INCOMP-----> component id 0
swc(M) IMG_COMP IMG_INCOMP----> component id 1
fcp(M) IMG_COMP IMG_INCOMP----> component id 2
rt(M) IMG_COMP IMG_INCOMP
```

FSSk Component Identification

A list of possible components can be found by using the **hadump** command. The table below lists the component name and its associated ID.

The Component ID# appears in the 2nd bit of Arg 1.Use that number to determine the component that is being referenced.

22:15:51.430 FSSK msg 0 1 0002**0001**,00000000,00000014,UPDA

Table 16-56 FSSk Component Identification

Component ID	Component Name
0x0	fcsw
0x1	swc
0x2	fcp
0x3	rt
0x4	fc
0x5	fabric
0x6	zone
0x7	fspf
0x8	ns
0x9	ms

Table	
Com	

16

 Table 16-56
 FSSk Component Identification

Component ID	Component Name
0xA	ps
0xB	rcs
0xC	evm
0xD	track
0xE	ts
0xF	slap
0x10	security
0x11	web
0x12	snmp
0x13	fw
0x14	diagfss

FSS Example

Reading FSSK Output in the portlogdump

Example

time	task	event	port	cmd args
18:13:37.979	FSSK	msg	0	0 0002000e,0000012c,00000000,UPDA
18:13:56.584	FSSK	cmd	0	0 0000000,0000000,0000000,STOP
18:13:56.584	FSSK	event	0	0 0000000,0000000,0000000,STOP
18:13:56.584	FSSK	msg	0	0 0000000,0000005,0000000,UPDA
18:13:56.861	FSSK	cmd	0	0 00020000,00000000,0000000,STOP
18:13:56.862	FSSK	event	0	0 00020000,00000000,00000000,STOP
18:13:56.862	FSSK	msg	0	0 00020000,0000005,00000000,UPDA
18:13:56.874	FSSK	cmd	0	0 00040000,0000000,0000000,STOP
18:13:56.875	FSSK	event	0	0 00040000,0000000,0000000,STOP

Follow the steps below to read the example above from left to right:

- 1. The *task* column should display FSSK. Refer to "About FSS," on page 16-70 for the FSS description.
- 2. Look at the *event* column. All events (msg, cmd, event, etc.) are described in Table 16-55 on page 16-71.
- 3. Bypass the *port* column; it will always be "0" since FSS is not a port-related service.
- 4. Look at the *cmd* column.
 - 0 indicates Sent, or Transmitted (TX).
 - 1 indicates Received (RX).

- 5. Begin reading the *Args* column.
 - Arg1 (the first 8 characters) displays the Service ID and the Component ID. Refer to the "FSSk Component Identification," on page 16-73.
 - Arg2 (the second 8 characters) displays send/receive operation data.
 - Arg3 (the third 8 characters) displays optional flags (send/receive data).
 - Arg4 (the fourth entry in the Arg column), displays text that helps clarify the output.
 - Note the displayed text (for example, UPDA).
 - Look back at the *event* column. You will see, for example *msg*.
 - Use Table 16-55 on page 16-71 to find the message description. For example: Find *msg* ----> UPDA ---> read description.

Fabric Services

About Fabric Services

Fabric Services refers to communication to and from any Well-Known Address.

Fabric Services Codes

Fabric Services Response Command Codes

 Table 16-57
 Fabric Services Response Command Codes

Value	Code	Description
0x01000000	FS_RJT	Reject
0x02000000	FS_ACC	Accept
0x03000000	FS_INQ	Vendor inquiry data
0x04000000	FS_FADDQ	Fabric address query
0x05000000	FS_FTOPO	Fabric topology

Fabric Services Reject Reason Codes

Table 16-58	able 16-58 Fabric Services Reject Reason	
Value	Code	
0x01	FS_INVALID_COMMAND	

Value	Code
0x01	FS_INVALID_COMMAND
0x03	FS_LOGICAL_ERROR
0x09	FS_CANT_PERFORM_RE Q
0x0B	FS_NOT_SUPPORTED

Fabric Service Reject Reason Code Explanation

 Table 16-59
 Fabric Service Reject Reason Code Explanation

Value	Code
0x00	ASRJT_EXPL_NONE
0x30	ASRJT_EXPL_NOSUCHALIAS
0x31	ASRJT_EXPL_NORESOURCE
0x32	ASRJT_EXPL_INVALID_ALIAS_ID
0x33	ASRJT_EXPL_ALIAS_ID_NOEXIST
0x34	ASRJT_EXPL_RESOURCE_PROBLEM
0x35	ASRJT_EXPL_SPAR_CONFLICT
0x36	ASRJT_EXPL_ALIAS_TOKEN_INVALID
0x37	ASRJT_EXPL_ALIAS_TOKEN_NOTSUPP
0x38	ASRJT_EXPL_CANTFORM_PORTLIST
0x40	ASRJT_EXPL_CANTFORM_CLASS

Value	Code
0x41	ASRJT_EXPL_NOSUCH_TOKEN
0x42	ASRJT_EXPL_UNAUTHREQ_BADPASS WD
0x43	ASRJT_EXPL_UNAUTHREQ_BADAUTH
0x44	ASRJT_EXPL_INVALID_AUTH_CTL

 Table 16-59
 Fabric Service Reject Reason Code Explanation

Fabric Segmentation Reason Details for Port

Table 16-60	Fabric Segmentation Reason Details for Port

Code	Reason
FAB_SEG_INCOMPAT_UNKNOWN	Unknown reason
FAB_SEG_INCOMPAT_VERSION	Version mismatch
FAB_SEG_INCOMPAT_FCTL_LEN	Flow Control len mismatch
FAB_SEG_INCOMPAT_FCTL_MODE	Flow control invalid mode
FAB_SEG_INCOMPAT_STRUCT_SZ	Passed size > fabOP_t
FAB_SEG_INCOMPAT_BB_CREDIT	BB credit mismatch
FAB_SEG_INCOMPAT_DFSZ	recv DataField sz mismatch
FAB_SEG_INCOMPAT_RATOV	RA TOV mismatch
FAB_SEG_INCOMPAT_EDTOV	ED TOV mismatch
FAB_SEG_INCOMPAT_OPMODE	Op Mode mismatch
FAB_SEG_INCOMPAT_LINK_CTL	Link Ctrl mismatch
FAB_SEG_INCOMPAT_CLASS2	Class 2 mismatch
FAB_SEG_INCOMPAT_CLASS3	Class 3 mismatch
FAB_SEG_INCOMPAT_MULCAST	Multicast mismatch
FAB_SEG_INCOMPAT_VCCONFIG	VC config mismatch
FAB_SEG_INCOMPAT_PIDMAP	VC PID MAP mismatch
FAB_SEG_INCOMPAT_CLASS1_SZ	Class1 datasize mismatch
FAB_SEG_INCOMPAT_CLASS1_OPT	Class1 options mismatch
FAB_SEG_INCOMPAT_CLASS2_SZ	Class2 datasize mismatch
FAB_SEG_INCOMPAT_CLASS2_OPT	Class2 options mismatch
FAB_SEG_INCOMPAT_CLASS3_SZ	Class3 datasize mismatch
FAB_SEG_INCOMPAT_CLASS3_OPT	Class3 options mismatch
FAB_SEG_INCOMPAT_CLASSF_OPT	ClassF options mismatch
FAB_SEG_INCOMPAT_CLASSF_INITCTL	ClassF init ctl mismatch
FAB_SEG_INCOMPAT_CLASSF_RECCTL	ClassF rec ctl mismatch
FAB_SEG_INCOMPAT_CLASSF_SZ	ClassF data sz mismatch
FAB_SEG_INCOMPAT_CLASSF_CONSE	ClassF con seq mismatch
FAB_SEG_INCOMPAT_CLASSF_EECRE	ClassF EE Credit mismatch
FAB_SEG_INCOMPAT_CLASSF_OPNSE	ClassF OPN SEQ mismatch
FAB_SEG_INCOMPAT_CLASSF_RSVD	ClassF resvd mismatch
FAB_SEG_INCOMPAT_MAX_DET_REASON	Maximum reasons

ISL Miscellaneous

ISL Flow Control Mode Values

Table 16-61 ISL Flow Control Mode Values

Value	Description
hex'0001'	Vendor Unique
hex'0002'	R_RDY Flow Control
hex'0003 - hex'FFFE'	Vendor Unique
Other Values	Reserved

ISL Flow Control Parameters

Table 16-62 ISL Flow Control Parameters

Size	Item
4	BB_Credit
16	Compatibility Parameters

Switch_Priority Field Values

Table 16-63 Switch_Priority Field Values

Hexadecimal Value	Description
00	Reserved
01	Highest priority value. (Note 1)
02	The switch was the principal switch prior to sending or receiving BF. (Note 2)
03 to FE	Higher to lower priority values. (Note 3)
FF	The switch is not capable of acting as a principal switch.
Notes -	

Notes -

1. This value allows the system administrator to establish which switch becomes the principal switch.

2. This allows the same switch to become principal switch if it is still part of the Fabric after sending and/or receiving the Build Fabric SW_ILS.

3. The Switch_Priority value for a given switch is established by means not defined by this standard.

Fibre Channel Common Transport Protocol (FC-CT)

The FC Common Transport Protocol section includes the following:

"About FC Common Transport Protocols (FC-CT)," on page 16-80

Name Server Information:

- "About the Name Server (SNS)," on page 16-83
- "Name Server Commands and Code Descriptions," on page 16-84
- "About the FC-4 Type Code," on page 16-90

Management Server Information

- "About the Management Server," on page 16-92
- "Management Server Reason Code and Explanation," on page 16-102
- "Management Server Command Code," on page 16-93
- "Management Server Examples," on page 16-105
- "About the Fabric Configuration Server," on page 16-92
- "About the Fabric Zone Server (ZS)," on page 16-106
- "Fabric Zone Server (ZS) Codes," on page 16-107

Zoning Information

- "About the Fabric Zone Server (ZS)," on page 16-106
- "Fabric Zone Server (ZS) Codes," on page 16-107

Alias Service Information

• "Alias Service," on page 16-111

Example

"ctin and ctout Event Example," on page 16-111

About FC Common Transport Protocols (FC-CT)

The Fibre Channel Common Transport Protocol is used when accessing the following generic service provisions:

- Name Server (FFFFC)
- Time Sever (FFFFB)
- Management Sever (FFFFA)
- Alias Server (FFFF8)
- Security-Key Distribution Service (FFFFF7).

The N_port uses FC-4 Data Device Frames to perform the request service or query function to these generic services. The R_CTL field of FC-4 Data Device request is always set to 0x02, and the R_CTL field of the reply is set to 0x03. The Type filed for both requests and replies is 0x20 (**portlogdump** trace does not provide the Type field information). The command code for FC-4 Data Device is always the third word of the payload (word 8) for both the request and reply.

There are 2148 bytes in a frame, **portlogdump** only captures a portion of the frame.

For Tx and Rx events, the first Arg field obtains the portion of the header and one word of the payload, word6. Arg 1, 2 and 3 belong to the FC_PH header (word. $0,1,4 = R_CTL,D_ID,S_ID,OX_ID,RX_ID$). The last argument (4th argument) belongs to the payload. More payload stuff obtains in the ctin and ctout events. Example shows in Output 2.

FC-CT Frame

Table 16-64 FC-CT Frame

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
Н	$R_CTL = 02 \text{ or}$	D_ID		
Е	03			
А	CS_CTL=00	S_ID		
D	Type =20	F_CTL		
Е	SEQ_ID	DF_CTL	DNT	
R	OX_ID		RX_ID	
5	Parameter			
6	FC-CT Header Usage			

Type of FC-CT Header Usage

Table 16-65 Type of FC-CT Header Usage

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0-3	Basic CT_IU preamble			
4-25		Extended CT_	IU preamble	

Basic CT_IU Preamble

Note

This reference only covers the Basic CT-IU Preamble

Table 16-66 Basic CT_IU Preamble

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
6	FC_CT Rev =01 IN_ID (S to zero		by the Requesting_CT)	
7	GS_TYPE	GS_Subtype	Options	Reserved
8	Command/Response Code page 16-76		Maximum/Residual Size	
9	Reserved	Reason Code	Reason Code Explanation	Vendor Unique

FC-CT Definitions

CT_Rev

Denotes the revision of the protocol. A version of hex '01' indicates prior versions of this standard. A value of hex'02' should be used to indicate GS3.rev7.01. **Note** - The version was changed to hex '02' to allow implementations to indicate support of the extended CT_IU preamble and the partial response indicator.

IN_ID

This field shall be set to zero by the Requesting_CT. **Note** - The IN_ID field is provided to allow distributed servers to communicate the identity of the original requestor. This field is not intended to enable third-party responses by distributed servers.

GS_Type

GS_Type is used to identify the type of Fibre Channel service.

Value	Service
00-1F	Vendor Unique
20	Reserve for us FC- SW2
FF	Broadcast
FE	Fabric_F_Port
FD	Fabric Controller
FC	Name Server
FB	Time Server
FA	Management Server
F9	QOS Provider
F8	Alias Server
F7	Key Services

 Table 16-67
 GS_Type Values

GS_Subtype

This field indicates the specific Server behind the Service. Values in this field provided by the individual Service.

The GS_Subtype field is used to indicate second level routing behind the N_Port. For example, if more than one server is provided by the Directory Service at the well-known address hex 'FFFFFC, then the GS_Subtype field is used to distinguish these different servers.

Refer to "Name Server GS_Subtype Code," on page 16-90 and "GS_Subtype Code," on page 16-101.

About the Command/Response Code Field

The Command Response field indicates whether the CT_IU is a request or a response. If the CT_IU is a request, this field then specifies the command to be performed. If the CT_IU is a response, then this field indicates whether the request was accepted or rejected. Requests and responses are further described in the Name Server and Management Server tables (page 16-84 and page 16-93). The table below depicts the valid Command/Response code values.

There are 2148 bytes in a frame, however the portlogdump only captures a portion of the frame.

For Tx and Rx events

- The first Arg field obtains the portion of the header and one word of the payload, word6.
- Arg 1, 2 and 3 belong to the FC_PH header (word 0,1,4 = R_CTL, D_ID, S_ID, OX_ID, RX_ID).
- The last argument (4th argument) belongs to the payload. More payload information is obtained in the ctin and ctout events.

About the Name Server (SNS)

The Name Server (also referred to as the Simple Name Server) is a switch service that stores names, addresses, and attributes, and provides them as required to other devices in the fabric. SNS is defined by fibre channel standards and exists at a Well-Known Address. May also be referred to as directory service.

- "Name Server Command Codes," on page 16-84
- "FC-CT Response Commands," on page 16-87
- "FC-CT Reject Reason Code (RJT)," on page 16-87
- "FC-CT Reason Code Explanation (NS_RJT)," on page 16-87
- "Fabric Internal FC_CT Commands," on page 16-88
- "Name Server Request Types," on page 16-89
- "Name Server Request Types," on page 16-89
- "Name Server Objects," on page 16-89
- "Name Server Port Type," on page 16-90
- "Name Server GS_Subtype Code," on page 16-90

Name Server Commands and Code Descriptions

Name Server Command Codes

Table 16-68 Name Server – Command Codes

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU			
Query	Query with port ID						
0100	GA_NXT	Get all next	Port Identifier	All			
0101	GID_A	Get identifiers	A list of Domain_IDs or Domain_ID/Area_IDs.	A list of Domain_IDs or Domain_ID/Area_IDs.			
0112	GPN_ID	Get Port Name	Port Identifier is hex (Note - The null value for the Port or Node Name object is hex '00 00 00 00 00 00 00 00'.	Port Name (Note - The null value for the Port or Node Name object is hex '00 00 00 00 00 00 00 00'.			
0113	GNN_ID	Get Node Name	Port Identifier	Node Name			
0114	GCS_ID	Get Class of Service	Port Identifier	Class of Service			
0117	GFT_ID	Get FC_4 Types	Port Identifier	FC-4 Types			
0118	GSPN_ID	Get Symbolic Port Name	Port Identifier	Symbolic Port Name			
011A	GPT_ID	Get Port Type	Port Identifier	Port Type			
011B	GIPP_ID	Get IP Address (Port)	Port Identifier	IP Address (Port)			
IP Addre ss (Port)	GFPN_ID	Get Fabric Port Name	Port Identifier	Fabric Port Name			
011D	GHA_ID	Get Hard Address	Port Identifier	Hard Address			
011E	GFD_ID	Get FC-4 Descriptors	Port Identifier	List of FC-4 Descriptors			
011F	GFF_ID	Get FC-4 Features	Port Identifier	FC-4 Features			
Query	with Port name	2					
0121	GID_PN	Get Port Identifiers	Port Name	Port Identifier			
012B	GIPP_PN	Get IP Address (Port)	Port Name	IP Address (Port)			
Query	With Node Na	me	1	1			
0131	GID_NN	Get Port Node Name	Node Identifiers	List of Port Identifiers			
0132	GPN_NN	Get Port Node Names	Node Name	List of Port Identifiers and Port Names			

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0135	GIP_NN	Get IP Address (Node)	Node Name	IP Address (Node)
0136	GIPA_NN	Get Initial Process Associator	Node name	Initial Process Associator
0139	GSNN_NN	Get Symbolic Node Name	Node Name	Symbolic Node
Query	With IP	I	I	1
0153	GNN_IP	Get Node Name	IP Address (Node)	Node Name
0156	GIPA_IP	Get Initial Process Associator	IP Address (Node)	Initial Process Associator
0171	GID_FT	Get Port Identifiers	None. Because FC-4 Type is specified as an encoded value, not as an object.	List of List of Port Identifiers.
0172	GPN_FT	Get FC4-Type Port Name	None, because type is	List of port identifiers and port names.
0173	GNN_FT	Get FC-4 Type Node Names.	specified as an encoded value, not as an object.	List of port identifiers and port names.
Query	With Port Type	9		
01A1	GID_PT	Get Port Identifiers	Port Type (refer to "Name Server Port Type," on page 16-90)	List of Port Identifiers
Query	With IP Port	I	I	
01B1	GID_IPP	Get Port Identifiers for IP Address (Port)	IP Address (Port)	List of Port Identifiers
01B2	GPN_IPP	Get Port Name	IP Address (Port)	Port Name
Query	With FC-4 Fea	tures	1	1
01F1	GID_FF	Get Port Identifiers	FC-4 Features	List of Port Identifiers
Registr	ation	1	1	1
0212	RPN_ID	Register Port Name	Port Identifier, Port Name	None
0213	RNN_ID	Register Node Name	Port Identifier, Node Name	None
0214	RCS_ID	Register Class of Ser- vice	Port Identifier, Class	None
0217	RFT_ID	Register FC-4 Types	Port Identifier, FC-4	None
			Types	

 Table 16-68
 Name Server – Command Codes (Continued)

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0218	RSPN_ID	Register Port SymbolicName for this Port ID	Port Identifier, Symbolic Port Name	None
021A	RPT_ID	Register Port Type for this Port ID	Port Identifier, IP Address (Port)	None
021B	RIPP_ID	Register IP Address (Port)	Port Identifier, IP Address (Port)	None
021C	RFPN_ID	Register Fabric Port Name	Port Identifier, Fabric Port Name	None
021D	RHA_ID	Register Hard Address	Port Identifier, Hard Address	None
021E	RFD_ID	Register FC-4 Descriptors	Port Identifier, FC-4 Types and FC-4 Descriptors	None
021F	RFF_ID	Register FC-4 Features	Port Identifier, FC-4 Features	None
0235	RIP_NN	Register IP Address for this Node WWN	Node Name, IP Address (Node)	None
0236	RIPA_NN	Register IP Address for this Node WWN	Node Name, Initial Process Associator	None
0239	RSNN_NN	Register Node Symbolic Name for this Node WWN	Node Name, Symbolic Node Name	None
De-Reg	gistration			
0300	DA_ID	De-register all	Port Identifier	None
FC CT	Command Re	estrictions	1	1

 Table 16-68
 Name Server – Command Codes (Continued)

The following command codes shall not be used by any well-known server for the FC-GS-x client/ server interface:

Command codes 0400-04FF and E000-EFFF: Fabric internal FC-CT commands

Command codes F000-FFFF: Vendor unique FC-CT commands.

Table 16-69 FC-CT Response Comma	nds
----------------------------------	-----

Value	Response	
0001-7FFF	Request CT_IU. These codes are used by all CT applications; for an example, refer to "Name Server – Command Codes," on page 16-84).	
8001	Reject Response CT_IU. These codes are used by all CT applications; for an example, refer to "FC-CT Reject Reason Code," on page 16-87).	
8002	Accept Response CT_IU (hex '0000': All available information was returned in the Accept CT_IU.)	
other values	Reserved	

FC-CT Reject Reason Code (RJT)

Reason	Description	
01	Invalid command code	
02	Invalid version level	
03	Logical error	
04	Invalid information unit size	
05	Logical busy	
07	Protocol error	
09	Unable to perform command request	
0B	Command not supported	
Others	Reserved	
FF	Vendor-unique error (see Vendor Unique field)	

 Table 16-70
 FC-CT Reject Reason Code

FC-CT Reason Code Explanation (NS_RJT)

Fibre Channel Service Responds (NS_RJT) Reason Code Explanation.

Figure 16-1	FC-CT Reject Reason	Code Explanation
-------------	---------------------	------------------

Encoded Value (Bits 15-8)	Description	
00	No additional explanation	
01	Port Identifier not registered	
02	Port Name not registered	
03	Node Name not registered	

Encoded Value (Bits 15-8)	Description	
04	Class of Service not registered	
05	IP Address (node) not registered	
06	Initial Process Associator not registered	
07	FC-4 TYPEs not registered	
08	Symbolic Port Name not registered	
09	Symbolic Node Name not registered	
0A	Port Type not registered	
0B	IP Address (port) not registered	
0C	Fabric Port Name not registered	
0D	Hard Address not registered	
0E	FC-4 Descriptor not registered	
0F	FC-4 Features not registered	
10	Access denied	
11	Unacceptable Port Identifier	
12	Data base empty	
13	No object registered in the specified scope	
Others	Reserved	

Figure 16-1 FC-CT Reject Reason Code Explanation (Continued)

Fabric Internal FC_CT Commands

 Table 16-71
 Name Server Command Codes - Fabric Internal FC_CT Commands

Code	Mnemonic	Description
0410	GE_ID	Get entry, based on port identifier
0420	GE_PN	Get entry, based on port name
0430	GE_NN	Get entries, based on node name
0450	GE_IP	Get entries, based on IP address
04A0	GE_PT	Get entries, based on port type
04B0	GE_ZM	Get entries, based on zone member
04C0	GE_ZN	Get entries, based on zone name
04D0	GE_IPP	Get entries, based on port IP address
04E0	GE_FF	Get entries based on FC-4 features

Name Server Request Types

Table 16-72	Name	Server -	Request	Types
-------------	------	----------	---------	-------

Hexadecimal Code	Description
01 <i>xx</i>	Get Object(s) (Query)
02 <i>xx</i>	Register Object
03 <i>xx</i>	Deregister Object(s)
0400-04FF and E000-EFFF	Fabric internal FC-CT commands
F000-FFFF	Vendor unique FC-CT commands

Name Server Objects

Object Mnemonic	Object Name	Description
А	Aggregated objects	Contains objects 1 through D
ID	Port Identifier	3-byte address identifier
PN	Port Name	8-byte Name_Identifier
NN	Node Name	8-byte Name_Identifier
CS	Class of Service	32-bit or 128-bit Internet Protocol address
IPA	Initial Process Associator	8-byte Process_Associator
FT	FC-4 TYPEs	32-byte bit field (8 words), one bit per TYPE supported
SPN	Symbolic Port Name	Variable length (0 to 255-byte) field
SNN	Symbolic Node Name	Variable length (0 to 255-byte) field
РТ	Port Type	1-byte encoded Port Type
IPP	IP Address (Port)	32-bit or 128-bit Internet Protocol address
FPN	Fabric Port Name	8-byte Name_Identifier
НА	Hard Address	3-byte address identifier
FD	FC-4 Descriptor	Variable length (0 to 255-byte) field
FF	FC-4 Features	128-byte array, four bits per TYPE

Table 16-73	Name Server –	Objects
-------------	---------------	---------

Name Server Port Type

Table 16-74	Name Server Port Type
-------------	-----------------------

Code	Description
0	NSPT_UNKNOWN
1	N_PORT
2	NL_PORT
3	NFL_PORT
	0x04-0x80 are reserved
0x7F special value for all of the above ports	Nx_PORT
0x81	F_PORT
0x82	FL_PORT
0x83	LT_PORT
0x84	E_PORT

Name Server GS_Subtype Code

Table 16-75	Name Service GS	Subtype Code
-------------	-----------------	--------------

Value	Service
01	Reserved
02	Name Server
03	IP Address Server
80-EF	FC-4 specific Servers
Other values	Reserved

About the FC-4 Type Code

The FC-4 Type Code provides the *Type* of protocol service (i.e., FC_CT, FCP, FCIP etc...).

FC-4 Type Codes

Table 16-76 FC-4 Type Code

Code	Service
0x00	Basic Link
0x01	Extend Link
0x04	ISO/IEC 8802-2 LLC/SNAP (in order)
0x05	FCIP
0x08	SCSI_FCP

Code	Service
0x09	SCSI-GPP
0x20	Fibre Channel Services (NS,MS,AS,etc.)
0x21	FC-FG
0x22	FC_SW
0x23	FC-AL
0x24	FC-SNMP
0x25-0x27	Fabric Services
0x30-0x33	Scalable Coherent Interface
0x40	HIPPI-FP
0x58	Virtual Interface
0x5b	Fabric
0xe0-0xff	Vendor Specific

 Table 16-76
 FC-4 Type Code (Continued)

Server-to-Server Protocol Data Unit Command/Response Code

 Table 16-77
 Server-to-server protocol Data Unit Command/Response Code

Brocade Specific	
0x0001	NSS_REQUEST
0x0002	NSS_RESPONSE
0x0003	NSS_INFORM
0x0004	NSS_DELETE

NSS_CT Command/Response Code

Table 16-78 NSS_CT Command/Response Code

CT_VU_NSS (Brocade, 0x0c) Vendor Unique Name Server Protocol Data Unit Command/Response Code. NSS_CT_SUBTYPE 1		
0x0001	NSS_REQUEST	
0x0002	NSS_RESPONSE	
0x0003	NSS_INFORM	
0x0004	NSS_DELETE	
0x0410	NSS_GE_ID	
0x0420	NSS_GE_PN	
0x0430	NSS_GE_NN	
0x0450	NSS_GE_IP	
0x0470	NSS_GE_FT	
0x04A0	NSS_GE_PT	

About the Management Server

The Management Service (MS) provides a single management access point within the Fibre Channel Fabric.

The Management Server (MS) Well Known Address = FFFFFA.

Management Service covers the following areas:

- The Fabric Configuration Server provides for the configuration management of the Fabric (refer to "About the Fabric Configuration Server").
- The Unzoned Name Server provides access to Name Server information that is not subject to zone constraints. Refer to "About the Name Server (SNS)," on page 16-83.
- The Fabric Zone Server provides access to, and control of, zone information (refer to "About the Fabric Zone Server (ZS)," on page 16-106).

About the Fabric Configuration Server

The Fabric Configuration Server provides a way for a management applications to discover Fibre Channel Fabric topology and attributes. Requests for the Fabric Configuration Server are carried over the Common Transport. The Fabric Configuration Server is intended to be distributed among Fabric elements, making the Fabric Configuration Server immediately available to an N_Port once it has successfully completed Fabric Login. However, the Fabric Configuration Server is not restricted or required to be part of a Fabric, and may be located in any N_Port or NL_Port.

16

Fabric Configuration Server Codes

Fabric Configuration Server registration, deregistration and queries are managed through protocols containing a set of Request CT_IUs and Response CT_IUs supported by the Fabric Configuration Server. Refer to "FC-CT Response Commands".

Management Server Command Code

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0x0100	MS_GTIN	Get Topology Information	The Request CT_IU for GTIN contains the request payload defined for the Request Topology Information Extended Link Service.	The Accept CT_IU for GTIN contains the ACC payload defined for the Request Topology Information Extended Link Service.
0x0101	MS_GIEL	Get interconnect element list		List of Interconnect Element Names and Types
0x0111	MS_GIET	Get interconnect element type	Interconnect element name	Interconnect element type
0x0112	MS_GDID	Get domain ID	Interconnect element name	Domain identifier
0x0113	MS_GMID	Get Mgmt Identifier	Interconnect element name	Management Identifier
0x0114	MS_GFN	Get Fabric Name	Interconnect element name	Fabric Name0x0115
0x0115	MS_GLIEN	Get logical IE Name	Interconnect element name	Interconnect element logical name
0x0116	MS_GMAL	Get Mgmt Address list	Interconnect element name	Interconnect element management address list
0x0117	MS_GIEIL	Get IE Information list	Interconnect element name	Interconnect element information list

 Table 16-79
 Management Server Command Code

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0x0118	MS_GPL	Get switch port list	Interconnect element name	List of Port Names, Port Types, Port TX Types, and Port Module Types
0x0121	MS_GPT	Get switch port type	Port Name	Port type
0x0122	MS_GPPN	Get switch physical port number	Port WWN	Port number
0x0124	MS_GAPNL	Get attached port name list	Port WWN	List of attached port name
0x0126	MS_GPS	Get switch port state	Port WWN	Port state (See Port State table)
0x0128	MS_GATIN	Get attached topology information	Port WWN	Attached topology information (4 bytes format)
Get Platfo	orm Related Info			
0x0191	MS_GPLNL	Get platform node name list	Platform name	List of platform node name
0x0192	MS_GPLT	Get platform type	Platform name	See Platform type table
0x0194	MS_GPLA	Get platform attributes	Platform name	Platform Mgmt address list
0x01A1	MS_GNPL	Get platform name-node name	Platform Node name	Platform Name
0x01A2	MS_GPNL	Get platform name list	None	List of platform names
0x01B1	MS_GNID	Get node identification data	Platform node name	None (Note - The Accept CT_IU for GNID contains the ACC payload defined for the Request Node Identification Data Extended Link Service.

 Table 16-79
 Management Server Command Code (Continued)

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0x0215	MS_RIELN	Register IE logic name	Interconnect element Name, Interconnect Element Logical Name	None
Register I	Platform Related Info	·	·	
0x0280	MS_RPL	Register platform	Platform Name, Platform Type, Platform Mgmt Address list, Platform Node Name List	None
0x0291	MS_RPLN	Register platform node name	Platform name, Platform Node Name	None
0x0292	MS_RPLT	Register platform type	Platform Name, Platform Type	None
0x0293	MS_RPLM	Register platform Mgmt address	Platform Name, Platform Mgmt Address	None
De-Regis	ter Platform Related I	nfo		
0x0380	MS_DP1	De-register platform	Platform Name	None
0x0391	MS_DPLN	De-register platform node name	Platform Node Name	None
0x0392	MS_DPLM	De-Register Platform Mgmt Addr		None
0x0393	MS_DPLML	De-register platform mgmt address list	Platform Name	None
Port Perfe	ormance Info			
0x0400	MS_GPST	Get port statistics		
0x0401	MS_GPERR	Get port errors	1	
0x0402	MS_PCLST	Clear port stats		
0x0403	MS_PENAB	Port enable		
0x0404	MS_PDISA	Port disable		
Routing I	nfo			

Table 16-79	Management Server Command Code	(Continued)	
-------------	--------------------------------	-------------	--

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0x0405	MS_GROUT	Get a route between two end ports		
0x0406	MS_GLROUT	Nexthop info from remote switch		
0x0407	MS_GPATH	Output ports to reach a domain		
0x0408	MS_GROUT	Set static route		
0x0750	MS_DELROUT	Delete static route	•	
Fabric Hi	erarchy		I	
0x0501	MS_GFABRIC	Return all switch and port wwns		
0x502	MS_GSW	Return switch and port wwns		
Switch In	fo			
0x0505	MS_GSWITCH	Get switch information		
0x0506	MS_SSWITCH	Set switch information		
0x0507	MS_GSWITCH2	Get switch information		
0x0508	MS_SSWITCH2	Set switch information 2.0+		
API Versi	on Info			
0x0509	MS_GAPIVERSION	Get API version		
0x050a	MS_GSSWITCH_N G	Get switch info ng		
0x050b	MS_SSWITCH_NG	Set switch info ng		
0x05010	MS_GPORTLOG	Get port log		
0x05011	MS_GERRLOG	Get error log		
0x05012	MS_GFRULOG	Get fru history log		
0x05013	MS_GPORTNVLOG	Get port flash log		
Port Info				

 Table 16-79
 Management Server Command Code (Continued)

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0x0605	MS_GPORT	Get port information		
0x0606	MS_SPORT	Set port information		
0x0607	MS_GPSTATS	Get port stats information		
0x0608	MS_SPSTATS	Set port stats information		
0x0609	MS_GDEVICE	Get device information		
0x060a	MS_GDEVICE2	Get device, string len = 256		
0x060b	MS_GPERRS	Get port err information		
0x060c	MS_SPERRS	Set port err information		
0x060d	MS_GENVATTR	Asset management		
0x060e	MS_GFLPORT	Get fl port info		
0x060f	MS_GMODULE	Get PortModule info		
0x0610	MS_SMODULE	Set PortModule info		
0x0611	MS_GPORT2	Get port info 2		
0x0612	MS_SPORT2	Set port info 2		
0x0613	MS_GPLATINFO	Get platform state info		
0x0614	MS_GPLATALL	get all platform database		
0x0615	MS_GCP	Get cp info		
0x0616	MS_SFRU	Set fru Attributes		
0x0617	MS_GENVATTR2	Switch Enclosure Attributes 2		
0x0618	MS_GPORT_NG	Get port info ng		
0x0619	MS_SPORT_NG	Set port info ng		
0x0620	MS_START_PORT_ DIAG	Start port diag		
0x0621	MS_STOP_PORT_D IAG	Stop port diag		
0x0622	MS_GET_PORT_DI AG_PF	Get port diag profile		
0x0623	MS_GET_PORT_DI AG_ST	Get port diag status		
0x0624	MS_GET_PORT_NA ME	Get port name		
0x0625	MS_SET_PORT_NA ME	Set port name		
0x0626	MS_GNPERRS	Get the node port err stats		

 Table 16-79
 Management Server Command Code (Continued)

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0x0707	MS_FW_GET_TH	Fabric Watch. Get Threshold.		
0x0708	MS_FW_APPLY_AL ARM	Fabric Watch. Apply alarm.		
0x0709	MS_FW_APPLY_B OUNDARY	Fabric Watch. Apply boundary.		
0x070a	MS_FW_CANCEL_ ALARM	Fabric Watch. Cancel alarm.		
0x070b	MS_FW_CANCEL_ BOUNDARY	Fabric Watch. Cancel boundary.		
0x070c	MS_FW_SET_ALA RM_LEVEL	Fabric Watch. Set alarm level		
0x070d	MS_FW_SET_ALA RM	Fabric Watch. Set Alarm.		
0x070e	MS_FW_SET_BN_L EVEL	Fabric Watch. Set Boundary Level		
0x070f	MS_FW_SET_BN_B S	Fabric Watch. Set Boundary.		
0x0710	MS_FW_SET_BN_H IGH	Fabric Watch. Set Boundary High level.		
0x0711	MS_FW_SET_BN_L OW	Fabric Watch. Set Boundary Low Level		
0x0712	MS_FW_SET_BN_T B	Fabric Watch. Set Boundary.		
0x0713	MS_FW_SET_BN_U NIT	Fabric Watch. Set Boundary Unit.		
0x0714	MS_FW_SET_TH_S TATUS	Fabric Watch. Set Threshold Status.		
0x0715	MS_FW_SET_TH_B I	Fabric Watch. Set Threshold		
0x0716	MS_FW_SET_TH_B T	Fabric Watch. Set Threshold		
0x0717	MS_FW_INIT_CON FIG	Fabric Watch. Initial Configuration.		
0x0718	MS_FW_INSERT_C ONFIG	Fabric Watch. Insert Configuration		
0x0719	MS_FW_UPDATE_ CONFIG	Fabric Watch. Update Configuration.		

 Table 16-79
 Management Server Command Code (Continued)

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0x071a	MS_FW_LOAD_CO NFIG	Fabric Watch. Load Configuration		
0x071d	MS_EVENT	Management Server event.		
0x071e	MS_EVENT_ENAB LE_FW	Management Server event - enable Fabric Watch.		
0x071f	MS_EVENT_DISAB LE_FW	Management Server Event - disable Fabric Watch.		
0x0720	MS_LICENSE_ADD	Management Server - license addition reported.		
0x0721	MS_LICENSE_RM	Management Server - license removal reported.		
0x0722	MS_LICENSE_GET	Management Server - get license.		
0x0723	MS_LICENSE_GET ALL	Management Server - get all licenses.		
0x0726	MS_PRODUCT_GE T	Management Server - get product.		
0x0727	MS_PRODUCT_GE TALL	Management Server - get all products.		
0x0728	MS_DOWNLOAD_ START	Management Server - download start reported.		
0x0729	MS_DOWNLOAD_ PACKET	Management Server - download packet reported.		
0x072a	MS_DOWNLOAD_ ABORT	Management Server - download aborted.		
0x072b	MS_DOWNLOAD_ END	Management Server - download ended.		
0x072c	MS_UPLOAD_STA RT	Management Server - upload started.		
0x072d	MS_UPLOAD_PAC KET	Management Server - packet upload reported.		
0x072e	MS_UPLOAD_ABO RT	Management Server - upload aborted.		
0x072f	MS_UPLOAD_END	Management Server - upload ended.		
0x0730	MS_EVENT_ENAB LE_TC	Management Server - Enable Track Changes.		

 Table 16-79
 Management Server Command Code (Continued)

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
0x0731	MS_EVENT_DISAB LE_TC	Management Server - Enable Track Changes.		
0x0732	MS_DOWNLOAD_ SELF_START	Management Server - self start download reported		
0x0733	MS_DOWNLOAD_ SELF_ABORT	Management Server - self start download aborted.		
In-Band S	SGroup Command			
0x0801	MS_SG_GET	Management Server -		
0x0802	MS_SG_SET	Management Server -		
0x0803	MS_SG_DEL	Management Server -		
*Note, 0x	x0801 - 0x804 do not app	bear in v4.2.0		
0x0810	MS_SEC_GET_CSR	Management Server - Security	-	
0x0811	MS_SEC_SET_CER T	Management Server - Security. Set certificate.		
0x0812	MS_SEC_SET_KEY _CERT	Management Server - Security - set key certificate.		
0x0813	MS_SEC_COUNTE R	Management Server - Security Counters.		
0x0814	MS_SEC_GEN_CSR	Management Server - Security.		
0x0815	MS_SEC_COUNTE R2	Management Server - Security Counter 2	-	
0x0816	MS_SEC_GET_BAN NER	Management Server - Security. Get banner.		
0x0817	MS_SEC_SET_BAN NER	Management Server - Security - Set banner.	-	
0x1000	MS_FC_API	Management Server - Forward compatible API		
FC-SW-2	MS Command Codes			
0xE000	MS_EXGPLDB	Exchange Platform Database		
0xE001	MS_MRGPLDB	Merge Platform Database	1	
0xE010	MS_PLCOMIT	Commit the previous Reg/ Dereg Plat Cmd		
0xE020	MS_GCAP	Get Management Server Capabilities	1	

 Table 16-79
 Management Server Command Code (Continued)

Code	Mnemonic	Description	Object(s) in Request CT_IU	Object(s) in Accept CT_IU
Brocade	Vendor Unique Platform	Related Info		
0xF000	MS_PLACTV	Activate Platform Management Services		
0xF001	MS_PLDACTV	DeActivate Platform Management Services		
0xF002	MS_TDMGMT	Enable/Disable TD Management Services		
Switch D	efault Zoning Behavior			
0x0805	MS_GSWITCHDZB	Get Switch Default Zoning Behavior		
0x0806	MS_SSWITCHDZB	Set Switch Default Zoning Behavior	1	

 Table 16-79
 Management Server Command Code (Continued)

Management Server GS_Subtype Code

Table 16-80 GS_Subtype Code

Code	Server
01	Fabric Configuration Server
02	Unzoned Name Server
03	Fabric Zone Server
04	Reserved for Lock Server
10	FDMI
E0-FF	Vendor Specific Servers
EO	Brocade Unique MS Subtype. Brocade API.
E1	MS telnet subtype. Brocade Telnet.
E2	Brocade Unique MS Subtype.
E3	Brocade API Event.
E4	Brocade unique subtype. Asynchronous Response Router (ARR).
Other values	Reserved

Management Server Reason Code and Explanation

If a Fabric Configuration Server request is rejected with a reason code of Unable to perform command request, then it is because of one of the following *reason codes*:

Code	Reason
00	No additional explanation
01	Invalid Name_Identifier for Interconnect Element or Port
10	Interconnect Element List not available
11	Interconnect Element Type not available
12	Domain Identifier not available
13	Management Identifier not available
14	Fabric Name not available
15	Interconnect Element Logical Name not available
16	Management Address List not available
17	Interconnect Element Information List not available
	0x18-2F reserved for IE
30	Port List not available
31	Port Type not available
32	Physical Port Number not available
33	Reserved
34	Attached Port Name List not available
35	Reserved
36	Port State not available
50	Unable to register Interconnect Element Logical Name
60	Platform Name does not exist
61	Platform Name already exists.
62	Platform Node Name does not exist
63	Platform Node Name already exists.
64	EXPL_PLATFORM_DATABASE_CONFLICT
65	EXPL_PLATFORM_FUNC_UNABLE_TO_ACTIVATE
66	M_E_P_UNABLE_TO_ACTIVATE MSRJT_EXPL_PLATFORM_FUNC_UNABLE_TO_ACTIVATE MSRJT_EXPL_PLATFORM_FUNC_SEC_CONFLICT

 Table 16-81
 Management Server Reason Code and Explanation

Code	Reason
67	MSRJT_EXPL_NO_PLATFORM_MGMTADDR
F0	EXPL_AUTHORIZATION_EXCEPTION
F1	EXPL_AUTHEN_EXCEPTION
F2	EXPL_DATABASE_FULL
0x01	MSRJT_EXPL_WWN_INVALID
0x91	MSRJT_EXPL_NO_PORT_STAT
0x92	MSRJT_EXPL_NO_PORT_ERRS
0x93	MSRJT_EXPL_PORT_CLR_FAIL
0x94	MSRJT_EXPL_PORT_ENABLE_FAIL
0x95	MSRJT_EXPL_PORT_DISABLE_FAIL
0x96	MSRJT_EXPL_NO_ROUT_INFO
0x97	MSRJT_EXPL_NO_LOCAL_ROUTE
0x98	MSRJT_EXPL_NO_PATH_INFO
0x99	MSRJT_EXPL_SET_STATIC_ROUTE_FAILED
0xa1	MSRJT_EXPL_DELETE_STATIC_ROUTE_FAILED
0xa5	MSRJT_EXPL_NO_SUCH_SWITCH
Definitions	for port info access
0xb5	MSRJT_EXPL_NO_SUCH_PORT
0xc5	MSRJT_EXPL_INVALID_ARG
0xc6	MSRJT_EXPL_FW_INVALID_CLASS_AREA
0xc7	MSRJT_EXPL_FW_INVALID_INDEX
0xc8	MSRJT_EXPL_FW_INVALID_LEVEL_INDICATOR
0xc9	MSRJT_EXPL_FW_INVALID_EVENT_TYPE
0xca	MSRJT_EXPL_FW_INVALID_ALARM_MATRIX
0xcb	MSRJT_EXPL_FW_INVALID_BUFFER_SIZE
0xcc	MSRJT_EXPL_FW_INVALID_LOW
0xcd	MSRJT_EXPL_FW_INVALID_HIGH
0xce	MSRJT_EXPL_FW_INVALID_TB
0xcf	MSRJT_EXPL_FW_INVALID_UNIT_STRING
0xd0	MSRJT_EXPL_FW_INVALID_STATUS
0xd1	MSRJT_EXPL_FW_INVALID_BT
0xd2	MSRJT_EXPL_FW_INVALID_WWN
0xd3	MSRJT EXPL FW DOWNLOAD FAILED

 Table 16-81
 Management Server Reason Code and Explanation (Continued)

Code	Reason
0xd4	MSRJT_EXPL_FW_INVALID_PROFILE
0xd5	MSRJT_EXPL_FW_LOAD_FAILED
0xd6	MSRJT_EXPL_FW_INSERT_FAILED
0xd7	MSRJT_EXPL_FW_DOWNLOAD_INIT_FAILED
0xd8	MSRJT_EXPL_FW_TOO_MANY_PROXY
0xd9	MSRJT_EXPL_FW_PROXY_NOT_FOUND
0xda	MSRJT_EXPL_FW_NO_LICENSE
SecureSAN P	KI installation support
0xdb	MSRJT_EXPL_CERT_ALREADY_INSTALLED
0xdc	MSRJT_EXPL_CERT_REQ_FAILED
Firmwaredow	nload errors
0xdd	MSRJT_EXPL_CORRUPT_FLASH
	/* attach port stats errors */
0xde	MSRJI_EXPL_RLS_SERVICE_DISABLE
port cfg errors	· · · · · · · · · · · · · · · · · · ·
0xe1	MSRJT_EXPL_PORTCFG_FAILED
0xe2	MSRJT_EXPL_PORTCFG_BADPORT
0xe3	MSRJT_EXPL_PORTCFG_BADARG
0xe4	MSRJT_EXPL_PORTCFG_BADNUMARG
0xe5	MSRJT_EXPL_PORTCFG_CFGABT
0xe6	MSRJT_EXPL_PORTCFG_NOLICENSE
0xe7	MSRJT_EXPL_PORTCFG_BADSWTYPE
0xe8	MSRJT_EXPL_PORTCFG_ISQLPORT
0xe9	MSRJT_EXPL_PORTCFG_ISLPORT
0xea	MSRJT_EXPL_PORTCFG_ISGPORT
0xeb	MSRJT_EXPL_PORTCFG_MCASTLB_LBEXIST
0xec	MSRJT_EXPL_PORTCFG_LONGDIST_MCASTON
0xed	MSRJT_EXPL_PORTCFG_LONGDIST_NOLDFAB
0xee	MSRJT_EXPL_PORTCFG_BADPTTYPE
0xef	MSRJT_EXPL_PORTCFG_BADSTRING

 Table 16-81
 Management Server Reason Code and Explanation (Continued)

Management Server Examples

v4.x

portlogdump: time	task	event	port	cmd	args
15:53:32.201	PORT	Rx	9	164	03fffffd,00fffffd,01a60312,02000000
15:53:32.201	PORT	Tx	9	0	c0fffffd,00fffffd,01a60312
15:53:32.201	PORT	scn	8	1	0000000,0000000,0000002

v3.x

Example CT-Management Server - FC-4 Type Device Data

```
      22:31:35.366 tReceive
      Rx
      3
      24 02fffc0a,00fffc0b,028dffff,01000000,10cb3a40

      22:31:35.366 tTransmit
      Tx
      3
      0 c0fffc0b,00fffc0a,028d025a, ,10cb3a40

      22:31:35.366 tTransmit
      ctin
      3
      fa 00030124,2000060,69500efa

      22:31:35.366 tTransmit
      ctout
      3
      fa 00038002,0000001,20080060

      22:31:35.366 tSwitch
      Tx
      3
      16 03fffc0b,00fffc0a,028d025a,0000001,10cb44d0
```

Output Line 1:

22:31:35.366 tReceive Rx 3 24 02fffc0a,00fffc0b,028dffff,01000000,10cb3a40

Arg 1	Arg 2	Arg 3	Arg 4	Arg 5
02fffc0a	00fffc0b	028dffff	01000000	10cb3a40
02 = RC_CTL (request)	00 = Identifier	$028d = OX_ID$	01000000 = FC- CT	10cb3a40 = IU address
fffc0a = D_ID	fffc0b = S_ID	ffff = RX_ID	IU Preamble; "01" = CT revision	pointer

 Table 16-82
 Breakdown of Arg Fields in Output (Line 1)

Output Line 2:

22:31:35.366 tTransmit Tx 3 0 c0fffc0b,00fffc0a,028d025a, ,10cb3a40

Table 16-83	Breakdown of Arg	Fields in	Output ((Line 2))
-------------	------------------	-----------	----------	----------	---

Arg 1	Arg 2	Arg 3	Arg 4	Arg 5
c0fffc0b	00fffc0a	028d025a		10cb3a40
c0 = RC_CTL(Link Control acknowledge)	00 = Identifier	028d = OX_ID	Null	10cb3a40 = IU address pointer
fffc0b = D_ID	fffc0a = S_ID	025a = RX_ID		

Output Line 3:

22:31:35.366 tTransmit ctin 3 fa 00030124,20000060,69500efa

0124 = CT-Management Server Code. Get a list of port names for this port WWN "200000606950efa".

Output Line 4:

```
22:31:35.366 tTransmit ctout 3 fa 00038002,00000001,20080060
```

- 8002 = CT-Management Server code. "8002" = accept.

Output Line 5:

22:31:35.366 tSwitch Tx 3 16 03fffc0b,00fffc0a,028d025a,00000001,10cb44d0

Arg 1	Arg 2	Arg 3	Arg 4	Arg 5
03fffc0b	00fffc0a	028d025a	00000001	10cb44d0
03 = RC_CTL (reply)	00 = Identifier	028d = OX_ID	00000001 = response object	10cb44d0 = IU address pointer
$fffc0b = D_ID$	00fffc0a = S_ID	$025a = RX_ID$	-	

 Table 16-84
 Breakdown of Arg Fields in Output (Line 5)

Example Summary:

Embedded switch fffc0a requests from the embedded switch fffc0b a list of port names for the device with WWN 200000606950efa. The response from fffc0b is accepted.

About the Fabric Zone Server (ZS)

Fabric Zone Server adds and removes, activations, and queries are managed through protocols containing a set of Request CT_IUs and Response CT_IUs supported by the Fabric Zone Server. For a Fabric Zone Server request, the payload shall be transported from the requestor to the Fabric Zone Server using a Request CT_IU. The corresponding Fabric Zone Server response is transported from the Fabric Zone Server to the requestor, in the Exchange established by the requestor, using a Response CT_IU.

The request codes described "Fabric Zone Server – Request Command Codes," on page 16-107 are based on Section 6.3 (Fabric Zone Server) of FC-GS4 rev 7.1 dtd Sep 19, 2001. We support only those codes that are compatible with BROCADE zoning.

Fabric Zone Server (ZS) Codes

Fabric Zone Server Request Command Codes

Code (hex)	Mnemonic & Description	Attribute(s) in Request CT_IU	Attribute(s) in Accept CT_IU
0100	GZC Get Capabilities	None	[Capabilities]
0111	GEST Get Enforcement State	None	[Enforcement state]
0112	GZSN Get Zone Set List	None	List of Zone Set Name and Number of Zones
0113	GZD Get Zone List	Zone Set Name	List of Zone Names and Number of Zone Members
0114	GZM Get Zone Member List	Zone Name	List of Zone Member Identifier Types and ZoneMember Identifiers
0115	GAZS Get Active Zone Set	None	Zone Set Name; Number of Zones; List of Zone Names, Number of Zone Members, List of Zone Member Identifier Types and Zone Member Identifiers
0116	GZS Get Zone Set	Zone Set Name	None
0200	ADZS Add Zone Set	Zone Set Name; Number of Zones; List of Zone Names, Number of Zone Members, List of Zone Member Identifier Types and ZoneMember Identifiers	None
0201	AZSD Activate Zone Set Direct(see note 2)	Zone Set Name; Number of Zones; List of Zone Names, Number of Zone Members, List of Zone	None
		MemberIdentifier Types and ZoneMember Identifiers	

 Table 16-85
 Fabric Zone Server – Request Command Codes

16-107

Code (hex)	Mnemonic & Description	Attribute(s) in Request CT_IU	Attribute(s) in Accept CT_IU
0202	AZS Activate Zone Set	Zone Set Name	None
0203	DZS Deactivate Zone Set	None	None
0204	AZM Add Zone Members	Zone Name; List of Zone MemberIdentifier Types and ZoneMember Identifiers	None
0205	AZD Add Zone	Zone Set Name; Zone Name	None
0300	RZM Remove Zone Members	Zone Name; List of Zone MemberIdentifier Types and ZoneMember Identifiers	None
0301	RZD Remove Zone	Zone Set Name; Zone Name	None
0302	RZS Remove Zone Set	Zone Set Name	None
	ev. 0.3, dated Sept. 17, 20		ne Management proposal from into <i>FC-GS4</i> . The proposal is still
0x0120	ZS_GZA	Get Zone Attributes	
0x0122	ZS_GZSE	GET ZONE SET list-Enhanced	
0x0123	ZS_GZDE	Get zone list- Enhanced	

 Table 16-85
 Fabric Zone Server – Request Command Codes (Continued)

Code (hex)	Mnemonic & Description	Attribute(s) in Request CT_IU	Attribute(s) in Accept CT_IU
0x0124	ZS_GZME	Get Zone Member List-Enhanced	
0x0126	ZS_GZSE	Get Zone Set - Enhanced	
0x0128	ZS_GAL	Get Alias List	
0x0129	ZS_GAM	Get Alias Member List	
0x0210	ZS_AZSE	Add Zone Set - Enhanced	
0x0220	ZS_CZS	Create Zone Set	
0x0224	ZS_AZME	Add Zone Members- Enhanced	
0x0225	ZS_CZ	Create Zone - Enh v. 0.31	
0x0228	ZS_SZA	Set Zone Attributes	
0x0229	ZS_CA	Create Alias - Enh v. 0.31	
0x0229	ZS_AA	Add Alias	
0x022A	ZS_AAM	Add Alias Members	
0x0321	ZS_RZ	Remove Zones	
0x0324	ZS_RZME	Remove Zone Members- Enhanced	
0x0329	ZS_RA	Remove Alias	
0x032A	ZS_RAM	Remove Alias Members	
0x032B	ZS_DLZS	Delete Zone Set - Enh v. 0.31	
0x032c	ZS_DLZ	Delete zone	
0x032d	ZS_DLA	Delete Alias	
0x400	ZS_CMIT	Commit zone change	

 Table 16-85
 Fabric Zone Server – Request Command Codes (Continued)

Zone Server Reject CT_IU Reason Codes

Table 16-86 Zone Server - Reject CT_IU Reason Codes Explanations

Hexadecimal Code	Description
	GS4-codes
0x00	ZS_RJT_EXPL_NONE
0x01	ZS_RJT_EXPL_ZONES_NOT_SUPPORTED
0x10	ZS_RJT_EXPL_ZONESET_NAME_UNKNOWN
0x11	ZS_RJT_EXPL_NO_ZONESET_ACTIVE
0x12	ZS_RJT_EXPL_ZONE_NAME_UNKNOWN
0x13	ZS_RJT_EXPL_ZONE_STATE_UNKNOWN
0x14	ZS_RJT_EXPL_INCORRECT_PAYLOAD_LENGTH
0x15	ZS_RJT_EXPL_ZONESET_TOO_LARGE
0x16	ZS_RJT_EXPL_DEACTIVATE_FAILED
0x17	ZS_RJT_EXPL_REQUEST_NOT_SUPPORTED
0x18	ZS_RJT_EXPL_CAPABILITY_NOT_SUPPORTED
0x19	ZS_RJT_EXPL_MEMBER_TYPE_NOT_SUPPORTED
0x1A	ZS_RJT_EXPL_INVALID_ZONESET
	Enhanced GS-4 codes
0x20	ZS_RJT_EXPL_ENHANCED_CMDS_NOT_SUPPORTED
0x21	ZS_RJT_EXPL_ZONE_SET_ALREADY_EXISTS
0x22	ZS_RJT_EXPL_ZONE_ALREADY_EXISTS
0x23	ZS_RJT_EXPL_ALIAS_ALREADY_EXISTS
0x24	ZS_RJT_EXPL_ZONE_SET_UNKNOWN
0x25	ZS_RJT_EXPL_ZONE_UNKNOWN
0x26	ZS_RJT_EXPL_ALIAS_UNKNOWN
0x28	ZS_RJT_EXPL_NAME_UNKNOWN
0x29	ZS_RJT_EXPL_NAME_ALREADY_EXISTS
0x30	ZS_RJT_EXPL_COMMIT_FAILED

Alias Service

Alias Service Request Code (FC_GS-1)

 Table 16-87
 Alias Service Request Code (FC_GS-1)

Value	Code	Description
0	ASRV_OK	Alias Service OK.
0	ASRV_ACC	Alias Service Accepted
1	ASRV_REJ	Alias Service. Refer to FS_RJT reason code explanation
2	ASRV_NOBUF	Alias Service no buffer
3	ASRV_INVALID	Alias Service - Invalid parameter
4	ASRV_BADPTR	Alias Service - bad pointer
11	ASRV_DB_ENTRY_EXIST	Related to database
12	ASRV_DB_NOENTRY	Alias Service - No entry.
19	ASRV_DB_CORRUPTED	Alias Service - This is a critical message.

ctin and ctout Event Example

v4.x

Example

portlogdump: time	task	event	port	cmd	args
15:53:40.971 15:53:40.971 15:53:40.973 15:53:40.980		ctin ctout Tx Rx		fc 16	000104a0,0000007f 00018001,00050000 03fffca0,00fffc01,033301c7,01000000 c0fffc01,00fffca0,033301c7

- fc = Name Server in Management Server entries.

v3.x

Example

12:06:16.433	tReceive	Rx3 0	20	02	fffffc,00011000,a838ffff,01000000 1st frame
12:06:16.433	tNSd	ctin	0	fc	00010173,0000008
12:06:16.433	tNSd	ctout	0	fc	00018001,00090700 2nd frame
12:06:16.433	tNSd	Tx3	0	0	03011000,00fffffc,a838000e

Decoding a ctin event

Example of MS > Name Server

12:06:16.433 tNSd ctin 0 fc 00010173,0000008

- 1. Note the fc in the cmd field. FC = Name Server for MS entries.
- 2. Divide "argument 1" into two 16-bit fields: 0001 and 0173
 - a. The first 16-bit field is the bit map, which indicates whether subsequent arguments are valid.
 - A "0001" entry (1 = 0001 in binary) means the that only one additional argument will follow after "argument 1" (in this example, 00000008). See CT_IU Frame below.
 - If the first 16-bit field is "0003", then the argument in position 1 and 2 are sets, thus you should have two arguments. In other words, 2 arguments will follow after "argument 1".
 - b. The second 16-bit field "0173" is the FC_CT command code. 0173 means "GNN_FT Get FC-4 Node Name." See CT_IU Frame below. And the FC-4 object defines by argument 2 "00000008". Argument 2 belongs to word 4 of the GNN_FT frame. Refer to FC-4 Type Code table. 08 means SCSI- FCP.

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	FC_CT Rev =01	IN_ID (S to zer	o by the Requesting_CT)		
1	GS_TYPE	GS_Subtype	Options	Reserved	
2	Command Co	de =0173	Maximum/Residual Size		
3	Reserved	Reason Code	Reason Code Explanation	Vendor Unique	
4	Reserved	Domain ID scope	Area_ID scope	FC-4 Type Code=08	

Table 16-88 Get FC4-Type Node Name, 0173 Frame

Decoding a ctout Event

Example

12:06:16.433 tNSd ctout 0 fc 00018001,00090700

- 1. Note the fc in the cmd field. FC = Name Server for MS entries.
- 2. Take argument 1 and divide into two 16-bit fields: 0001 and 8001
 - a. The first 16-bit field "0001" is the bit map indicating whether subsequent args are valid.
 - A "0001" entry (1 = 0001 in binary) means the that only one additional argument will follow after "argument 1" (in this example, 00000008). See CT_IU Frame below.
 - If the first 16-bit field is "0003", then the argument in position 1 and 2 are sets, thus you should have two arguments. In other words, 2 arguments will follow after "argument 1".
 - b. The second 16-bit field represents the FC_CT response code.

- a. If the second 16-bit field is a reject ("8001") then argument 2 is a reject, refer to "FC-CT Reject Reason Code (RJT)". (The example below is 00090700). See CT_IU Frame below.
- b. If the second 16-bit field is an accept ("8002"), then arguments 2 and 3 are the IU response objects.

GNN_FT (0173)

Table 16-89 Accept Get FC4-Type Node Name, 0173 Frame

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	FC_CT Rev =01	IN_ID (S to zero b	y the Requesting_C	Γ)		
1	GS_TYPE	GS_Subtype	Options	Reserved		
2	Command C	Code = 8001	Maximum/Residual Size			
3	Reserved	Reason Code =09	Reason Code Explanation =07	Vendor Unique		
4	Control	Por	t Identifier#1	·		
5		Reserved				
6 - 7		Node Nat	me #1			

Link Control Frames

About Link Control Frames

Link Control frames are used to indicate successful or unsuccessful delivery of data frames, to control the flow of data frames, and to provide some low-level N_port commands.

Link Control Headers

ACK Frame

ACK_1, one data frame in a sequence (RCTL = C0)

	ACK Frame								
	Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0				
Н	0	CO	D ID						
Ε	1	CS_CTL	S_ID						
Α	2	Type =00	F CTL						
D	3	SEQ_ID	DF_CTL=00	SEQ	DNT				
Ε	4	OX	ID	RX	ID				
R	5	0000(Reserved)	History bit	Number of f	rames being				
			(see note)	acknow	vledge				

Note

When bit 16 (history bit) is set to 0, it indicates all previous ACKs of that sequence have been sent. When bit 16 (history bit) is set to 1, it indicates at least one previous ACK has not been sent.

F_BSY Frame

Fabric Busy (F_BSY) Frame (RCTL = C5 or C6)

Fabric Busy (F_BSY) Frame								
	Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0			
Н	0	C5 or C6	C5 or C6 D ID					
\mathbf{E}	1	CS_CTL	S ID					
Α	2	Reason Code		F_CTL				
D	3	SEQ ID	DF CTL	SEQ	DNT			
Ε	4	OX	OX ID RX ID					
R	5		Parameter	fields				

F_RJT and N_RJT Frames

Refer to "Fabric Services Reject Reason Codes," on page 16-76 for reject reason information.

	Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
Н	0	C5 or C6	D_ID		
Ε	1	CS_CTL	S ID		
Α	2	Туре	F CTL		
D	3	SEQ_ID	DF CTL SEQ DNT		
Е	4	OX	ID RX ID		
R		-	_	-	

When Action Code is set to 0x01, it indicates the sequence is terminated. When it is set to 0x02, it means the sequence is still alive.

Link Control Frames

P_BSY UI Frame

(RCTL = C4)

	Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
Н	0	C4		D_ID			
Е	1	CS_CTL	S ID				
Α	2	Туре	F CTL				
D	3	SEQ_ID	DF_CTL	CTL SEQ DNT			
E	4	OX	ID	RX	ID		
R	5	Action Code	Reason Code	0x00	Vendor		
	(Reserved)						
	When Action Code is set to 0x01 it indicates the sequence terminated. When it set to 0x02 if						

means the sequence is still alive.

When Action Code is set to 0x01, it indicates the sequence is terminated. When it set to 0x02, it means the sequence is still alive.

No Operation Frame (NOP)

	Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
Н	0	80	D_ID			
Е	1	CS_CTL=00	S ID			
Α	2	Type =00	F CTL			
D	3	SEQ_ID	DF_CTL=00	SEQ)_DNT	
Е	4	OX	ID	R	X_ID	
R	5		Parame	ter		

Abort Sequence Frame (ABTS)

	Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
Н	0	81	D_ID			
Е	1	CS_CTL=00	S ID			
Α	2	Type =00	F CTL			
D	3	SEQ_ID	DF_CTL=00	SEQ	DNT	
Е	4	OX ID RX ID			ID	
R	5		Paramete	er		

Basic Accept Frame for ABTS

	Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
Н	0	84		D_ID	
Е	1	CS_CTL=00		S_ID	
Α	2	Type =00		F_CTL	
D	3	SEQ_ID	DF CTL=00 SEQ DNT		
Е	4	OX	ID	RX_ID	
R	5		Paramete	er	
	6	Set_ID valid	Last SEQ_ID	Rese	erved
		(80=valid,			
		00=not)			
	7	OX ID Aborted		RX_ID	Aborted
	8	Low SE	Q_CNT	High SE	Q_CNT)

Basic Reject Frame for ABTS

	Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
Η	0	85		D_ID			
Е	1	CS_CTL=00	S ID				
Α	2	Type =00	F CTL				
D	3	SEQ_ID	DF_CTL=00	SEQ_1	DNT		
Е	4	OX	ID	RX	ID		
R	5	Parameter					
	6	Reserved	Reason	Explanation	Vendor		

Link Control Code

F_BSY Reason Code

For Frame information, refer to "F_BSY Frame," on page 16-114.

Table 16-90 F_BSY Reason Code

F	F_BSY Reason Code				
R_CTL	Reason Code Meanings				
	1x	The Fabric is busy			
C5	3x	The destination N_Port is busy with a Class-1 connection			

F	BSY Reason	Code
C6	10	The Fabric is busy; ACK_1 is not retransmitted
	11	The Fabric is busy; ACK_N or ACK_0 is not retransmitted
	12	The Fabric is busy; N_Port is rejecting.
	13	The Fabric is busy; Fabric is rejecting.
	17	The Fabric is busy; Link Credit Reset.
	18	The Fabric is busy; Notify.
	19	The Fabric is busy; End.
	30	ACK_1 is not retransmitted.
	31	ACK_0 or ACK_N is not retransmitted.
	32	N_Port is rejecting; the destination N_Port is engaged in a Class-1 connection.
33		Fabric is rejecting; the destination N_Port is engaged in a Class-1 connection.
	37	Link Credit Reset; the destination N_Port is engaged in a Class-1 connection.
	38	Notify; the destination N_Port is engaged in a Class-1 connection.
	39	End; the destination N_Port is engaged in a Class-1 connection.
	Others	Reserved

Table 16-90 F_BSY Reason Code

P_BSY Action and Reason Codes

P_BSY Action and Reason Codes			
Action code	Reason Code	Meanings	
	01	Physical N_Port is busy	
01 or 02	03	A required resource is busy	
	07	Partial Multicast busy	
	FF	Vendor Unique is busy	

F_RJT and N_RJT Action and Reason Codes

Refer to "F_RJT and N_RJT Frames," on page 16-114 for Frame information.

	F RJT and N RJT Action and Reason Codes			
Action code	Reason Code	Meanings		
	01	Invalid D_ID		
	02	Invalid S ID		
	03	N_Port temporarily not available		
	04	N Port permanently not available		
01	05	Class of service not supported		
	16	Login required		
	17	Excessive sequences attempted		
	18	Unable to establish exchange		
	19	Reserved		
	09	Invalid R_CTL		
	0A	Invalid F_CTL		
	0B	Invalid OX_ID		
	0C	Invalid RX_ID		
	0D	Invalid SEQ_ID		
	0E	Invalid DF_CTL		
0.2	0F	Invalid SEQ_CNT		
02	10	Invalid Parameter field		
	11	Exchange error		
	12	Protocol error		
	13	Incorrect length		
	14	Unexpected ACK		
	15	Class of service not supported by the entity at FFFFFE		
	1A	Fabric path not available		
	1B	Invalid VC_ID		
	1C	Invalid CS_CTL		
	1D	Insufficient Resources		
	1E	Dedicated Simplex not supported		
	1F	Invalid class of services		
	20	Preemption request rejected		
	21	Preemption not enabled		
	22	Multicast error		
	23	Multicast error terminate		
	FF	Vendor unique		
	Others	Reserved		

Link Control Abort Sequence (ABTS)

Reject Reason for ABTS

Basic Reject Reason for ABTS			
Reason Code	Meanings		
01	Invalid (R_CTL) command code		
03	Logical error; service requested was invalid or		
	inconsistent.		
05	Logical Busy; unable to process service		
07	Protocol Error; other FC-2 error		
09	Unable to perform a request		
Ff	Vendor Unique error		

Reject Reason Explanation for ABTS

Basic Reject Reason Explanation for ABTS			
Reason Code Meanings			
00	Invalid (R_CTL) command code		
03	Logical error; service requested was invalid or inconsistent.		
05	Logical Busy; unable to process service		
Other value	Reserved		

Payload Information

This section describes the following types of Payload Frames:

- "SW_ELS Payload Frames," on page 16-119
- "SW_ILS Payload Frames," on page 16-123
- "FC-CT Payload Frames," on page 16-129

SW_ELS Payload Frames

Refer to "Extended Link Service (ELS)," on page 16-46 for command information.

ELS Acceptance Frame

	ELS Acceptance					
Word	Word Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0					
0	ELS command =02		000000			
n	EL	S specific param	eters (if present)			

ELS Rejection Frame

	ELS Rejection					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	ELS Command =01		000000			
1	Reserved	Reason Code	Reason Explanation	Vendor Unique		

N_Port Logout Frame

	N_Port Logout (LOGO)					
Word	Word Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0					
0	Command $=x'05'$	X'00'	X'00'	X'00'		
1	Reserved N Port Identifier					
2-3		Port_Name of the LOGO originator				

PDISC, FDISC,FLOGI, PLOGI

login (PLOGI) x'03'						
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	Command	X'00'	X'00'	X'00'		
	=x'03,04,50,51'					
1-4		Common Servio	ce Parameters			
5-6		N_Port	Name			
7-8	Node Name					
9-12	Class-1 Service Parameters					
13-17	Class-2 Service Parameters					
18-21	Class-3 Service Parameters					
22-25	Class-4 Service Parameters					
26-29	Vendor Version Level					
30-31		Service Av	ailability			
		Reser	ved			
Note - The	Fabric Discover link se	rvice (FDISC) allow	ws an N_Port to exc	hange service		
parameters v and the Fab	with the Fabric without	affecting the operat	ting parameters betw	ween the N_Port		

ADISC Frame

	Discover Address (ADISC)						
Word	Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0						
0	Command $=x'52'$	X'00'	X'00'	X'00'			
1	Reserved	Hard address of originator					
2-3	Port_Name of originator						
4-5	Node_name of originator						
6	Reserved						

PRLI and PRLO Frames

	PRLI and Process Logout (PRLO),x'21'						
Word	Word Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0						
0	Command Page Payload length						
	=x'20', x'21' length=x'10'						
1-n		Service Parar	neter Page				

SCN Frame

State Change Notification (SCN)					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	ELS Command	Page	Payload	d length	
	=x'60'	Length=x'04'			
1 - n		Affected N Port ID Pages			

Page Length: The length in bytes of an Affected N_Port ID page. This value is fixed at hex '04'.

Payload Length: The length in bytes of the entire payload, inclusive of the word 0. This value shall be a multiple of 4. The minimum value of this field is 4. The maximum value of this field is 256.

Affected N_Port ID page: Each Affected N_Port ID page contains the ID of an Affected N_Port or NL_Port. The RSCN payload may contain zero or more of these pages.

SCR Frame

State Change Registration (SCR)					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	ELS Command	X'00'	X'00'	X'00'	
	=x'62'				
1		Reserved		Registration	
				Function	
Function Value 0 = Reserved					
	tected registration) - 1	Register to receive	all RSCN requests	issued by the	
Fabric Contr	oller for events detec	ted by the fabric.			
2 (N Port Detected registration) - Register to receive all RSCN requests issued by the					
Fabric Controller for events detected by the Affected N_Port or NL_Port.					
3 (Full registration) - Register to receive all RSCN requests issued by the Fabric Controller.					
The RSCN r	equest shall return all	Affected N_Port I	D pages.		

4 = Reserved

4 – 254 (Clear registration) - Remove any current RSCN registrations. 255

RSCN Frame

Registration State Change Notification					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	ELS Command =x'61'	Page Length	Payloa	d Length	
n	A	Affected N_Port ID Pages (4 bytes each)			

Page Length: The length in bytes of an Affected N_Port ID page. This value is fixed at hex '04'. **Payload Length:** The length in bytes of the entire payload, inclusive of the word 0. This value shall be a multiple of 4. The minimum value of this field is 4. The maximum value of this field is 256.

Affected N_Port ID page: Each Affected N_Port ID page contains the ID of an Affected N_Port or NL_Port. The RSCN payload may contain zero or more of these pages.

LISM Frame

LISM Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0		Command code = 11010000			
1-2	Port_Name				

LIFA, LIPA, LIHA and LISA Frames

	Payload format for LIFA, LIPA, LIHA and LISA Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	Command code = $110[2-5]0000$					
1	L	L Bit Map of AL PAs				
2-4		Bit Map of AL_	PAs (continued)			

FAN Frame

FAN Frame							
Word	Bits 31-24	Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0					
0	Command =x'60000000'						
1	L Loop Fabric Address						
2-3	Fabric Port Name						
4-5	Fabric Name						
Fabric Addre	ess Notification (FA	N) is sent by the FL	Port using an S_ID	of x'FFFFFE' to			
	each NL Port currently logged in to that FL Port. The purpose of FAN was to allow the						
FL_Port to p	FL_Port to provide information to all logged-in NL_Ports on an arbitrated loop following						
loop initializ	ation.						

LIRP and LILP Frames

	LIRP and LILP Frames					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	Loop	Initialization Code (0x11060000-0x1107	70000)		
1	Count (Total	1 st AL_PA	2 nd AL_PA			
	AL_PA count in	(Master's ALPA)	_	••• continue-		
	list)			list AL_PAs		
2-26	List of A	List of AL_PA (Note - FF means AL_PA is not present.)				

SW_ILS Payload Frames

Refer to "Switch Fabric Internal Link Services (SW_ILS)," on page 16-54 for command information.

SW_ILS Acceptance Frame

ELS Acceptance					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	ELS command =02	000000			
n	ELS specific parameters (if present)				

SW_ILS Reject Frame

Refer to "SW_ILS Reject Reason Codes (SW_RJT)," on page 16-57 for reject information. Refer to "SW_ILS Reject Example," on page 16-63 to view an example.

	SW_RJT				
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	SW	SW ILS Command Codes =01000000			
1	Reserved	Reason Code	Explanation	Vendor	
				Unique	

		ELP Request	t	
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	SW	ILS Command	Codes =10xxxxxx	K
1	Revision	F	lags	Reserved
2		R_A_	ΓΟV	
3	E D TOV			
4-5	Requester Interconnect Port Name			
6-7		Requester Switch Name		
8-9	(Class F Service	Parameters 16	
10	Clas	ss 1 Interconnec	et Port Parameters	
11	Clas	ss 2 Interconnec	et Port Parameters	
12	Clas	ss 3 Interconnec	et Port Parameters	
13-17	Reserved			
18	ISL Flow Contr	rol Mode	Flow Control P	arameter Length N)

Flow Control Parameters

SW_ILS ELP Request Frame

SW_ILS ELP Accept Frame

Ν

	ELP Accept					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
6	SW	ILS Command O	Codes =02000000			
7	Revision =02		Reserved			
8		R_A_T	OV			
9		E_D_T	OV			
10-11	Re	sponder Intercon	nect Port Name			
12-13		Responder Switch Name				
14-17		Class F Service H	Parameters 16			
18	Cla	ss 1 Interconnect	Port Parameters			
19	Cla	ss 2 Interconnect	Port Parameters			
20	Cla	ss 3 Interconnect	Port Parameters			
20-24		Reserved				
25	ISL Flow Cont	rol Mode	Flow Control Par	rameter Length		
			(N)		
Ν		Flow Control	Parameters			

SW_ILS EFP Request Frame

	EFP Request Payload					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	Command code	Record length =10	0 Payload length			
	=11					
1	Reserved			Principal		
				switch priority		
2-3		Principal Switch Name				
4-7	Domain ID List (see SW ISL – Domain ID list format)					
Ν		Multicast ID	List			

Domain ID List Format

Item	Size (Bytes)
Record_Type	1 byte
	00 = reserved
	01 =Domain ID List record
	02 = Multicast ID List record
	all other = reserved
Domain_ID	1
Reserved	2
Reserved	4
Switch_Name for Domain_ID	8

Multicast ID List Format

Item	Size Bytes
Record_Type	1 byte
	1 byte
	00 = reserved
	01 =Domain ID List record
	02 = Multicast ID List record
	all other = reserved
Multicast_Group_number	1
Reserved	2
Reserved	12

DIA Request Frame

		DIA Request		
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	Command code = 12000000			
1-2		Originating Sw	itch Name	
3		Not Mean	ingful	

DIA Accept Frame

		DIA Accept		
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	Command code = 02000000			
1-2		Responding Sv	witch Name	
3		Not Mear	ningful	

RDI Request Frame

	RDI Request				
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	Command code = 13	Reserved	Paylo	ad Length	
1-2		Requesting Switch	h Name		
3	Reserved			Requested	
				Domain ID#1	
4	Reserved			Requested	
				Domain ID#2	
n	Reserved			Requested	
				Domain ID#n	

RDI Accept Frame

		RDI Accept			
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	Command code = 02			load Length	
1-2		Requesting Switch Name			
3	Reserved			Granted Domain ID#1	
4	Reserved		Granted Domain ID#2		
n	Reserved		Granted Domain ID#n		

BF (Build Fabric) Frame

		BF Request		
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	17	00	00	00
indicating	Fabric Configuration, the Fabric Controller of FFFFFD', indicating th	of the originating	Switch. The l	D_ID field shall be

RCF Frame

	RCF Request					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	18	00	00	00		
indicating	Fabric configuration, t the Fabric controller o FFFFFD', indicating th	f the originating	switch. The D	_ID field shall be		

FSPF Header Format

	FSPF header Format						
Word	Bits 31-24	Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0					
0		Command code					
1	FSPF version	AR Number	Authentication	Reserved			
		Туре					
2	Originating Domain ID						
3-4	Authentication						

HLO Request Frame

	FSPF HLO Request Frame				
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
FSPF		Command co	ode =14000000		
Header	FSPF version	AR Number	Authentication	Reserved	
(word	=02	=00	Type =00		
0-4)	Originating Domain ID				
	Authentication =00000000				
5	Reserved (option)				
6	Hello Interval				
7	Dead Interval				
8	Reserved		Originating Port Ir	ndex	

LSU Request Frame

	Link Status Updated Request Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
FSPF		Command code =13000000				
Header	FSPF version	AR Number	Authentication	Reserved		
(word 0-	=02	=00	Type =00			
3)	Originating Domain ID					
	Authentication =00000000					
5	Reserved Flags					
6	Number of Link State Records					
n		Link Sta	ate Records			

Flags Field Bit Map

Bit	Description
0	Data Base Exchange –
	Value b'1' - LSU is used for initial database synchronization
	Value b'0' - LSU is used for a topology update
1	Database Complete
	Value b'1' - Last sequence of data base synchronization. LSU contains
	no LSRs.
	Value b'0' - Not the last sequence of database synchronization
2-7	Reserved

Link State Record Header Format

	Link State Record Header							
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0				
0	LSR Type	Reserved	LSR Age					
1	Reserved							
2	Link State Identifier							
3	Advertising Domain ID							
4	Link State Incarnation Number							
5	Check Sum		LSR Length					

Link State Descriptor

Link State Descriptor						
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
FSPF	Command code =15000000					
Header	FSPF version	AR Number	Authentication	Reserved		
(Word 0-	=02	=00	Type =00			
3)	Originating Domain ID					
	Authentication =00000000					
Link	LSR Type =01	Reserved	LSI	R Age		
State	Reserved					
Recorder	Link State Identifier					
Header	Advertising Domain ID					
(Word 4-	Link State Incarnation Number					
9)	Check sum		LSR Length			
10	Reserved		Number of Links			
11-14	Link Descriptor #1					
15-18	Link Descriptor #2					
n	Link Descriptor # n					

LSA Request Frame

Link State Acknowledged Request							
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0			
FSPF	Command code =16000000						
Header	FSPF version $=2$	AR Number	Authentication	Reserved			
(Word		=00	Type =00				
0-4)	Originating Domain ID						
	Authentication						
5	Reserved			Flags			
6	Number of Link State Record Headers						
Link	LSR Type	Reserved	LSI	SR Age			
State	Reserved						
Header	Link State Identifier						
	Advertising Domain ID						
	Link State Incarnation Number						
	Check Sum LSR Length						

FC-CT Payload Frames

Refer to "FC-CT Frame," on page 16-81 for Frame-related information.

FC-CT Payload Diagram

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
Н	R_CTL =02 or 03	D_ID		
Е	CS_CTL=00	S_ID		
Α	Type =20	F_CTL		
D	SEQ_ID	DF_CTL	DF CTL SEQ DNT	
Е	OX	ID RX ID		
R		Parameter		
6	FC-CT Header Usage			

FC-CT Header Usage

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0-3	Basic CT_IU preamble			
4-25	Extended CT_IU preamble			

Note

This reference only covers the Basic CT-IU Preamble

Basic CT_IU Preamble

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC_CT Rev =01	IN_ID (S to zero b	N_ID (S to zero by the Requesting_CT)	
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Command Code		Maximum/I	Residual Size
3	Reserved	Reason Code	Reason Code	Vendor Unique
			Explanation	_

CT-IU Request

GA_NXT (0100), GPN_ID (0112), GNN_ID (0113),GCS_ID (0114), GFT_ID (0117), GSPN_ID (0118), GPT_ID (011A), GIPP_ID (011B), GFPN_ID (11C), GHA_ID (011D), GFF_ID (011F)

		-	-	
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC_CT Rev =01	IN_ID (S to zero by the Requesting_CT.)		_CT.)
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Request/Response	Command Code Maximum/Residual Size		Residual Size
3	Reserved	Reason Code	Reason Code	Vendor Unique
			Explanation	
4	Reserved		Port Identifier	

Get Identifier {GID-A (0101) }				
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC_CT Rev =01 IN ID (S to zero by the Requesting_CT.)			J_CT.)
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Request/Response Command Code		Maximum/Residual Size	
3	Reserved	Reason Code	Reason Code	Vendor Unique
			Explanation	
4	Reserved	Domain_ID	Res	erved
		scope		

GFD_ID (011E)

Get Identifier - GID-A (0101)

	Get FC-4 Descriptors, 011E Frame				
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	FC_CT Rev =01	IN_ID (S to zero	IN ID (S to zero by the Requesting_CT.)		
1	GS_TYPE	GS_Subtype	Options	Reserved	
2	Request/Response	Command Code Maximum/Residual Size		Residual Size	
3	Reserved	Reason Code	Reason Code	Vendor Unique	
			Explanation		
4	Reserved	Port Identifier			
5-12	FC-4 Types (32 bytes)				

Get IP Address - GIPP_PN (012B)

	Get IP Address (Port), 012B Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	FC_CT Rev =01 IN ID (S to zero by the Requesting_CT.)			I_CT.)		
1	GS_TYPE	GS_Subtype	Options	Reserved		
2	Request/Response	Command Code	Maximum/Residual Size			
3	Reserved	Reason Code	Reason Code	Vendor Unique		
			Explanation			
4	Port Name					

GID_NN (0131)

E.

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC_CT Rev =01	IN ID (S to zero by the Requesting_CT.)		
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Request/Response	Command Code	Maximum/Residual Size	
3	Reserved	Reason Code	Reason Code	Vendor Unique
			Explanation	
4	Node Name			

Get FC4- Type Node Name - G	GNN_FT	(0173)
-----------------------------	--------	--------

Get FC4-Type Node Name, 0173 Frame				
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC_CT Rev =01 IN_ID (S to zero by the Requesting_CT)			
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Command Code		Maximum/Residual Size	
3	Reserved	Reason Code	Reason Code Explanation	Vendor Unique
4	Reserved	Domain ID scope	Area_ID scope	FC-4 Type Code

GID_PT (01A1)

	Get Port Identifiers, 01A1 Frame				
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	FC_CT Rev =01	IN ID (S to zero by the Requesting CT)		T)	
1	GS_TYPE	GS_Subtype	Options	Reserved	
2	Command Code		Maximum/Residual Size		
3	Reserved	Reason Code	Reason Code Explanation	Vendor Unique	
4	Port Type	Domain ID scope	Area_ID scope	Reserved	

CT_IU Response

GA_NXT (0100)

Accept – All CT-IU request, 0100 Frame				
Item	Size (Bytes)			
CT_IU preamble	16			
Port Type	1			
Port Identifier	3			
Port Name	8			
Length of Symbolic Port Name (m)	1			
Symbolic Port Name	m			
Reserved	255-m			
Node Name	8			
Length of Symbolic Node Name (n)	1			
Symbolic Node Name	n			
Reserved	255-n			
Initial Process Associator	8			
IP Address (Node)	16			
Class of Service	4			
FC–4 TYPEs	32			
IP Address (Port)	16			
Fabric Port Name	8			
Reserved	1			
Hard Address	3			

GID_A (0101)

	Accept Domain_ID Scope is zero, 0101 Frame				
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	FC_CT Rev =01	IN_ID (S to zero b	by the Requesting_C	T)	
1	GS_TYPE	GS_Subtype	Options	Reserved	
2	Request/Response Command Code		Maximum/Residual Size		
3	Reserved	Reason Code	Reason Code	Vendor Unique	
			Explanation		
4	Control	Domain ID#1	Reserved		
5	Control	Domain ID#2	Reserved		
n	Control	Domain ID#n	Res	erved	

	Accept Dor	nain_ID Scope is no	on-zero, 0101 Fram	e
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC_CT Rev =01	IN_ID (S to zero by the Requesting_CT)		
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Request/Response	Command Code	Maximum/H	Residual Size
3	Reserved	Reason Code	Reason Code	Vendor Unique
			Explanation	
4	Control	Request Domain	Rese	erved
		ID#1		
5	Control	Request Domain	Rese	erved
		ID#2		
n	Control	Request Domain	Rese	erved
		D#n		

GPN_ID (0112)

	Accept Port Name, 0110 Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	FC_CT Rev =01 IN_ID (S to zero by the Requesting_CT.)					
1	GS_TYPE	GS_Subtype	Options	Reserved		
2	Request/Response	Command Code	Maximum/Residual Size			
3	Reserved	Reason Code	Reason Code	Vendor Unique		
			Explanation			
4	Port Name					

GNN-ID (0113)

	Accept Node Name, 0113 Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	FC_CT Rev =01	IN_ID (S to zero	by the Requesting	I_CT.)		
1	GS_TYPE	GS_Subtype	Options	Reserved		
2	Request/Response	Command Code	Maximum/Residual Size			
3	Reserved	Reason Code	Reason Code	Vendor Unique		
			Explanation			
4	Node Name					

GCS-ID (0114)

	Accept Class of Service, 0114 Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	FC_CT Rev =01	IN_ID (S to zero	by the Requesting	J_CT.)		
1	GS_TYPE	GS_Subtype	Options	Reserved		
2	Request/Response	Command Code	Maximum/Residual Size			
3	Reserved	Reason Code	Reason Code	Vendor Unique		
			Explanation			
4	Class of Service					

GFT-ID (0117)

Accept FC-4 Type, 0117 Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	FC_CT Rev =01	$v = 01$ IN ID (S to zero by the Requesting_CT.)			
1	GS_TYPE	GS_Subtype	Options	Reserved	
2	Request/Response	Command Code	Maximum/Residual Size		
3	Reserved	Reason Code	Reason Code	Vendor Unique	
			Explanation		
4-11	FC4-type (32 bytes)				

GSPN_ID (0118)

	Accept Symbolic Port Name, 0118 Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	FC_CT Rev =01	IN_ID (S to zero by the Requesting_CT.)				
1	GS_TYPE	GS_Subtype	Options	Reserved		
2	Request/Response	Command Code	Maximum/Residual Size			
3	Reserved	Reason Code	Reason Code	Vendor Unique		
			Explanation			
m	Name Length (m)	Symbolic Port Name				
n		Reserved (255	5 bytes +m)			

GPT_ID (011A)

Accept Port Type, 011A Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0	
0	FC_CT Rev =01	IN_ID (S to zero by the Requesting_CT.)			
1	GS_TYPE	GS_Subtype	Options	Reserved	
2	Request/Response	Command Code	Maximum/Residual Size		
3	Reserved	Reason Code	Reason Code	Vendor Unique	
			Explanation		
4	Port Type		Reserved		

GIPP_ID (011A)

	Accept IP Address (Port), 011B Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	FC_CT Rev =01 IN_ID (S to zero by the Requesting_CT.)					
1	GS_TYPE	GS_Subtype	Options	Reserved		
2	Request/Response	Command Code	Maximum/Residual Size			
3	Reserved	Reason Code	Reason Code	Vendor Unique		
			Explanation			
4-7	IP Address Port					

GFPN_ID (011C)

	Accept Fabric Port Name, 011C Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	FC CT Rev =01 IN ID (S to zero by the Requesting_CT.)					
1	GS_TYPE	GS_Subtype	Options	Reserved		
2	Request/Response	Command Code	Maximum/I	Residual Size		
3	Reserved	Reason Code	Reason Code	Vendor Unique		
			Explanation			
4-5	Fabric Port Name					

GHA_ID (011D)

	Accept Hard Address, 011D Frame					
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0		
0	FC_CT Rev =01	IN_ID (S to zero by the Requesting_CT.)				
1	GS_TYPE	GS_Subtype	Options	Reserved		
2	Request/Response	Command Code	Maximum/I	Residual Size		
3	Reserved	Reason Code	Reason Code	Vendor Unique		
			Explanation	_		
4	Reserved		Hard Address			

GNN_FD (0173)

Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC_CT Rev =01	IN_ID (S to zero by the Requesting_CT)		
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Command Co	ode =0173 Maximum/Residual Size		
3	Reserved	Reason Code	Reason Code Explanation	Vendor Unique
4	Control	Port Identifier#1		
5		Reserved		
6-7		Node Na	ime #1	

GFD_ID (011E)

Accept FC-4 Descriptor, 011E FRame		
Item	Size(Bytes)	
CT_IU preamble	16 (see p.85)	
Descriptor length (m) #1	1	
FC-4 Descriptor #1	m	
Reserved	255-m	
Descriptor length (m) #n	1	
FC-4 Descriptor #n	m	
Reserved	255-m	

GFF_ID (011F)

	Accept FC-4 Feature,011F Frame			
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC CT Rev =01 IN ID (S to zero		by the Requesting	_CT.)
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Request/Response Command Code		Maximum/I	Residual Size
3	Reserved	Reason Code	Reason Code	Vendor Unique
			Explanation	
4-35	4-35 FC-4 Features (128bytes)			

GID_ID (0121)

	Accept Port Identifiers,0121 Frame			
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC_CT Rev =01	IN ID (S to zero by the Requesting_CT.)		
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Request/Response Command Code		Maximum/I	Residual Size
3	Reserved	Reason Code	Reason Code	Vendor Unique
		Explanation		
4	Reserved	Port Identifiers		

GIPP_ID (012B)

	Accept IP Address (Port) ,012B Frame			
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC CT Rev =01 IN ID (S to zero by the Requesting CT.)			_CT.)
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Request/Response Command Code		Maximum/I	Residual Size
3	Reserved	Reason Code	Reason Code	Vendor Unique
			Explanation	
4-7	4-7 IP Address (Port)			

GID_PT (01A1)

	Accept Port Identifiers, 01A1 Frame			
Word	Bits 31-24	Bits 23-16	Bits 15-8	Bits 7-0
0	FC_CT Rev =01	IN_ID (S to zero b	by the Requesting_C	T)
1	GS_TYPE	GS_Subtype	Options	Reserved
2	Comman	d Code	Maximum/I	Residual Size
3	Reserved	Reason Code	Reason Code Explanation	Vendor Unique
4	Control rrrr	Port Identifier #1		
	Control #n	Port Identifier #n		

Fibre Channel Protocol Information

The Fibre Channel Standards Information refers to the following:

- "Brocade ASIC Loop Code"
- "Well-Known Ordered Sets"
- "Port State Machine Values (pstate)"
- "Well Known Addresses"
- "Valid AL_PA Addresses"

Brocade ASIC Loop Code

Table 16-91	Brocade ASIC Loop Code
-------------	------------------------

cmd	LoopSCN Reason Code	Description
	0x0	Loop entering OPEN_INIT state
	0xA45	
	0x5F4A	
	0x8001	retry loop init
	0x8002	start loop after gaining sync
LIP	0x8003	restart loop after port reset
LII	0x8004	lip the loop after loop timeout
	0x8005	retransmitting LIP in ARBF0
	0x8006	lip the loop if OPN(x,y) returns
	0x8007	start loop when transit out of G_Port
	0x8008	start loop if self loopback
	0x8009	per N_Port FLA LINIT ELS
	0x800a	per N_Port FLA LPC ELS
	0x800b	per QL LOOP_LIP
	0x800c	per QL LOOP_INIT
	0x800d	LIP due to loop rdx buffer overflow
	0x800e	Start loop because of loop diagnostic
	0x800f	Per new Phantoms being added
	0x8010	Per new Phantom being added (IPO)
	0x8011	bloomInitRetry - loop init timed out
	0x8012	bloomInitRetry - stuck at init state
	0x8013	bloomInitRetry - no RSVD mini-buf for LISM
	0x8014	bloomInitRetry - not pt-to-tp capable
	0x8015	bloomInitRetry - no LISM rx in 2 AL_TIME
	0x810	bloomStopLinit - L to F transition
	F7F7	The loop port in the initializing state is requesting loop initialization but does not currently have a valid AL_PA

cmd	LoopSCN Reason	Description
	Code	
	F8F7	Loop port failure, requesting initialization
	(F7,AL_PS)	The loop port identified by the AL_PS value is requesting loop initialization.
	(F8,AL_PS)	A loop interconnection has failed
	(AL_PD,AL_PS)	The Selective Reset LIP is used to perform a vendor specific reset at the loop port specified by the AL_PD value. AL_PD=FF as a destination indicating all ports.
ТМО	D6	LIP time out. The looplet loop initialization timed out.
BMP	D3	Looplet AL_PA bitmap. Loop Init completed, FL_Port in monitoring state.
LIM	D2	LISM completed, FL_Port became the loop master.
OLD	D5	Port transited to the old_port state
OLP	D0	Offline

 Table 16-91
 Brocade ASIC Loop Code (Continued)

Well-Known Ordered Sets

A transmission word that uses 8B/10B mapping and begins with the K28.5 character. Ordered sets occur outside of frames, and include the following items:

- Primitive signals: Indicate events.
- Frame delimiters: Mark frame boundaries and describe frame contents.
- Primitive sequences: Indicate or initiate port states.

Ordered sets are used to differentiate fibre channel control information from data frames and to manage the transport of frames.

Types of Ordered Sets:

There are two types of Ordered Sets:

- Point to Point Link. Refer to "Point to Point Link Primitive Signals," on page 16-139 and "Point to Point Link Primitive Sequences," on page 16-139
- Arbitrated Loop. Refer to "Arbitrated Loop Primitive Signals," on page 16-140 and "Arbitrated Loop Primitive Sequence," on page 16-140.

Point to Point Link - Primitive Signals

The following point to point link primitive signals indicate switch events:

Table 16-92 Point to Point Link - Primitive Signals

Code	Primitive Signal	Ordered Set
Idle	Idle	K28.5 - D21.4 - D21.5 - D21.5
R_RDY	Receiver_Ready	K28.5 - D21.4 - D10.2 - D10.2
VC_RDY	Virtual Circuit Ready	K28.5 - D21.7 - VC_ID - VC_ID
BB_SCs	buffer-to-buffer State Change (SOF)	K28.5 - D21.4 - D22.4 - D22.4
BB_SCr	buffer-to-buffer State Change (R_RDY)	K28.5 - D21.4 - D22.6 - D22.6
SYNx	Clock Synchronization Word X	K28.5 – D31.3 – CS_X – CS_X
SYNy	Clock Synchronization Word Y	K28.5 – D31.3 – CS_Y – CS_Y
SYNz	Clock Synchronization Word Z	K28.5 – D31.3 – CS_Z – CS_Z

Point to Point Link - Primitive Sequences

The following point to point link primitive signals indicate port states:

Table 16-93 Point to Point Link - Primitive Sequences

Primitive Sequence	Definition	Ordered Set
Not_Operational (NOS)	• Loss-of-Synchronization for more than a timeout period (R_T_TOV) while in the Word Synchronization Acquired State	K28.5 D21.2 D31.5 D5.2
	• Loss-of-Signal while in the Word Synchronization Acquired State	
	• Timeout (R_T_TOV) during the Link Reset Protocol	
Offline (OLS)	The FC_Port transmitting the Sequence is:	K28.5 D21.1 D10.4 D21.2
	• initiating the Link Initialization Protocol	
	• receiving and recognizing NOS and	
	• entering the Offline State	
Link_Reset (LR)	Transmitted by an FC_Port to initiate the Link Reset Protocol, or to recover from a Link Timeout.	K28.5 D9.2 D31.5 D9.2
Link_Reset_Response (LRR)	Transmitted by an FC_Port to indicate that it is receiving and recognizes the LR Primitive Sequence.	K28.5 D21.1 D31.5 D9.2

16

Arbitrated Loop - Primitive Signals

Table 16-94	Arbitrated Loop - Primitive Signals
-------------	-------------------------------------

Code	Primitive Signal	Ordered Set
ARByx	Arbitrate	K28.5 D20.4 y x
ARB(val)	Arbitrate	K28.5 D20.4 val val
CLS	Close	K28.5 D5.4 D21.5 D21.5
DHD	Dynamic Half-Duplex	K28.5 D10.4 D21.5 D21.5
MRKtx	Mark	K28.5 D31.2 MK_TP AL_PS
OPNyx	Open full-duplex	K28.5 D17.4 AL_PD AL_PS
OPNyy	Open half-duplex	K28.5 D17.4 AL_PD AL_PD
OPNyr	Open selective replicate	K28.5 D17.4 AL_PD D31.7
OPNfr	Open broadcast replicate	K28.5 D17.4 D31.7 D31.7

Arbitrated Loop - Primitive Sequence

Table 16-95	Arbitrated Loop - Primitive Sequence

Code	Primitive Sequence	Ordered Set
LIP(F7,F7)	Loop InitializationF7, F7	K28.5 D21.0 D23.7 D23.7
LIP(F8,F7)	Loop InitializationF8, F7	K28.5 D21.0 D24.7 D23.7
LIP(F7,x)	Loop InitializationF7, x	K28.5 D21.0 D23.7 AL_PS
LIPyx	Loop Initializationreset	K28.5 D21.0 AL_PD AL_PS
LIPfx	Loop Initializationreset all	K28.5 D21.0 D31.7 AL_PS
LIPba	Loop Initializationreserved	K28.5 D21.0 b a
LPByx	Loop Port Bypass	K28.5 D9.0 AL_PD AL_PS
LPBfx	Loop Port Bypass all	K28.5 D9.0 D31.7 AL_PS
LPEyx	Loop Port Enable	K28.5 D5.0 AL_PD AL_PS
LPEfx	Loop Port Enable all	K28.5 D5.0 D31.7 AL_PS

Port State Machine Values (pstate)

State Machine Value	es	
0	AC	Active state
	IDLE	Idle
1	LR1	Link Reset: LR transmit state
	LR2	Link Reset: LR receive state
	LR3	Link Reset: LRR receive state
	LF1	Link Failure: NOS transmit state
	LF2	Link Failure: NOS receive state
3	OL1	Offline: OLS transmit state
	OL2	Offline: OLS receive state
	OL3	Offline: wait for OLS state
4	NOS	Not Operational

Table 16-96 Port State Machine Value

Well Known Addresses

In the Fibre Channel protocol, a Well Known Address is a logical address defined by the fibre channel standards as assigned to a specific function, and stored on the switch.

Table 16-97 Well Known Addresses

Well Known Address	Description
0xFFFFFF	BROADCAST - frames transmitted to this address are broadcast to all operational N_Ports.
0xFFFFFE	FABRIC_F_PORT- A Fabric is required to support this address to accept Fabric login (FLOGI) requests from an F_Port, or FL_Port associated with an N_Port or group of NL_Ports on an arbitrated loop.
0xFFFFFD	FABRIC_CONTROLLER - This address is responsible for managing the Fabric. It initializes the Fabric, and routes frames to the well-known address.
0xFFFFFC	NAME_SERVER - This address provides a registration service allowing an N_Port to register information in a database or initiate database queries to retrieve information about other ports.
0xFFFFFB	TIME_SERVER - is an optional service that facilitates the maintenance of system time between ports.
0xFFFFFA	MANAGEMENT_SERVER - this is an optional service used to collect and report management information such as a link usage, error statistics, and link quality.

Well Known Address	Description
0xFFFFF9	Quality of Service Facilitator (QoSF) for Class-4 Bandwidth and Latency Management (FC_PH2).
0xFFFFF8	ALIAS_SERVER - is an optional service to manage the assignment of alias address identifiers.
0xFFFFF7	Security-Key Distribution Service - is an optional service to manage the distribution of encryption security keys to facilitate secure communications between N_Ports.
0xFFFFF6	Clock Synchronization Server (FC-PH3)
0xFFFFF5	MULTICAST SERVER (FC-PH3) - is an optional service that manages the reliable multicast function in Class -6. ACK and RJT responses from members of a multicast group and sending a single reply to the multicast originator.
0xFFFFF4 - 0xFFFFF0	Reserved
S_ID and D_ID Assignment	nts
0xFFFBxx	Multicast (group in lower byte)
0xFFFCxx	Embedded_Port (domain in lower byte)

 Table 16-97
 Well Known Addresses (Continued)

Valid AL_PA Addresses

Arbitrated Loop Physical Address (AL_PA) and Loop IDs are listed in Table 16-98.

There are 127 possible devices on a loop. AL_PA 00 is the Master AL_PA which is normally reserved for the FL_Port. The remaining 126 AL_PA values between x01 and xEF are available for use by NL_Ports. The next AL_PA is EF, E8, E4 and so on from the lowest priority. There are only 127 values on a LOOP because the other bits are used to preserved the running disparity on the link, and AL_PA values are restricted to those characters that result in neutral disparity after encoding.

Word 0		Word 2		Word 3	}	Word 4	ļ
Bit	AL_PA	Bit	AL_PA	Bit	AL_PA	Bit	AL_PA
31	L_bit	31	3C	31	73	31	B3
30	00	30	43	30	74	30	B4
29	01	29	45	29	75	29	B5
28	02	28	46	28	76	28	B6
27	04	27	47	27	79	27	B9
26	08	26	49	26	7A	26	BA
25	0F	25	4A	25	7C	25	BC
24	10	24	4B	24	80	24	C3
23	17	23	4C	23	81	23	C5

 Table 16-98
 Valid AL_PA Addresses

16

Word 0		Word 2		Word 3	3	Word 4		
Bit	AL_PA	Bit	AL_PA	Bit	AL_PA	Bit	AL_PA	
22	18	22	4D	22	82	22	C6	
21	1B	21	4E	21	84	21	C7	
20	1D	20	51	20	88	20	С9	
19	1E	19	52	19	8F	19	CA	
18	1F	18	53	18	90	18	СВ	
17	23	17	54	17	97	17	CC	
16	25	16	55	16	98	16	CD	
15	26	15	56	15	9B	15	CE	
14	27	14	59	14	9D	14	D1	
13	29	13	5A	13	9E	13	D2	
12	2A	12	5C	12	9F	12	D3	
11	2B	11	63	11	A3	11	D4	
10	2C	10	65	10	A5	10	D5	
9	2D	9	66	9	A6	9	D6	
8	2E	8	67	8	A7	8	D9	
7	31	7	69	7	A9	7	DA	
6	32	6	6A	6	AA	6	DC	
5	33	5	6B	5	AB	5	E0	
4	34	4	6C	4	AC	4	E1	
3	35	3	6D	3	AD	3	E2	
2	36	2	6E	2	AE	2	E4	
1	39	1	71	1	B1	1	E8	
0	3A	0	72	0	B2	0	EF	

Table 16-98 Valid AL_PA Addresses (Continued)

16

Appendix

Δ

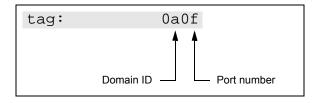
This appendix contains a worksheet for you to record your configuration information when you configure your switches in a FICON environment.

FICON	FICON [®] Director Configuration Worksheet												
					Type: _		el: S/N	S/N:					
HCD de FICON	efined Sv ® Directo	witch ID_ or Domai	n ID	_(Switch ID) (Switch @)	Cascaded DirectorsNoYes Corresponding cascaded Director Domain ID Fabric name								
FICON	® Directo	or F_Port	S		Attached	N_Ports	/ E_Port	s (CU, CPC, or Is	SL)				
Slot Numb er	Port Numb er	Port Addre ss	Laser Type: LX / SX	Port Name	Node Machi Model Serial Nur Type ne CU / Type CHNL				ISL CU I/F CPC CHPID				

FICON	FICON [®] Director Configuration Worksheet												
FICON	® Directo	or Manufa	acturer:		Type: Model: S/N:								
HCD de FICON [®]	efined Sv ® Directo	vitch ID_ or Domain	n ID	_(Switch ID) (Switch @)	Cascaded DirectorsNoYes Corresponding cascaded Director Domain ID Fabric name								
FICON	[®] Directo	or F_Port	s		Attached	N_Ports	/ E_Port	s (CU, CPC, or I	SL)				
Slot Numb er	Port Numb er	Port Addre ss	Laser Type: LX / SX	Port Name	Node Type CU / CHNL	Machi ne Type	Model	Serial Number	ISL CU I/F CPC CHPID				

Appendix

Identifying Ports From the Tag Field (FICON Link Incidents)


The **ficonshow rlir** command returns, among other information, a tag field for the switch port. The tag field is a concatenation of the switch domain ID and port number. You can use this tag data to identify the port on which a link incident occurred.

The following example shows output from the ficonshow rlir command.

Example

```
switch:user> ficonshow RLIR
{
 {Fmt Type PID Port Incident Count TS Format Time Stamp
 0x18 F 223f00 63 2 Time server Wed Aug 6 04:11:01 2003
 Port Status: Link not operational
 Link Failure Type: Loss of signal or synchronization
 Registered Port WWN Registered Node WWN
                                             Flag Node Parameters
 50:05:07:64:01:60:13:04 50:05:07:64:00:c5:15:10 0x00 0x000000
 Type Number: 003868
 Model Number:
                     002
 Manufacturer:
                     IBM
  Plant of Manufacture: PK
 Sequence Number:
                     00000000007D
                     0111
  tag:
 Switch Port WWN
                      Switch Node WWN
                                              Flag Node Parameters
  20:21:00:60:69:80:5d:c7 10:00:00:60:69:80:5d:c7 0x00 0x200a3f
 Type Number: 002109
                    M12
 Model Number:
 Manufacturer:
                     BRD
 Plant of Manufacture: CA
 Sequence Number: 0FT02X805DC6
  tag:
                     0a0f
 }
}
The local RLIR database has 1 entry.
switch:user>
```

In the command output, the switch tag is 0a0f and is interpreted as shown below.

The tag field is in hexadecimal and indicates switch domain ID 10, port 15.

FICON does not support the Extended Edge PID method. Only the Core PID method is supported.

Table B-1 converts the SilkWorm 24000 physical slot/ports to hexadecimal tag field values. In the table, the "___" in the tag represents a 2-digit hexadecimal number and can be replaced by the switch domain ID for any given switch.

Logi	Logical Switch 0							CP SI	ots	Logical Switch 1							
Slot	1	Slot	2	Slot	3	Slot	4	Slot 5	Slot 6	Slot	7	Slot	t 8 Slot 9		Slot 10		
Por t	Тад	Por t	Tag	Por t	Тад	Por t	Tag	CP1	CP2	Por t	Tag	Por t	Тад	Por t	Тад	Por t	Tag
15	0f	15	1f	15	2f	15	3f			15	4f	15	5f	15	6f	15	7f
14	0e	14	_le	14	2e	14	3e			14	4e	14	5e	14	6e	14	7e
13	0d	13	1d	13	2d	13	3d			13	4d	13	5d	13	6d	13	7d
12	0c	12	_1c	12	2c	12	3c			12	4c	12	5c	12	6c	12	7c
11	0b	11	_1b	11	2b	11	3b			11	4b	11	5b	11	6b	11	7b
10	0a	10	1a	10	2a	10	3a			10	4a	10	5a	10	6a	10	7a
9	09	9	_19	9	29	9	39			9	49	9	59	9	69	9	79
8	08	8	18	8	28	8	38			8	48	8	58	8	68	8	78
7	07	7	17	7	27	7	37			7	47	7	57	7	67	7	77
6	06	6	16	6	26	6	36			6	46	6	56	6	66	6	76
5	05	5	15	5	25	5	35			5	45	5	55	5	65	5	75
4	04	4	14	4	24	4	34			4	44	4	54	4	64	4	74
3	03	3	13	3	23	3	33			3	43	3	53	3	63	3	73
2	02	2	12	2	22	2	32			2	42	2	52	2	62	2	72
1	01	1	11	1	21	1	31			1	41	1	51	1	61	1	71
0	00	0	10	0	20	0	30			0	40	0	50	0	60	0	70

 Table B-1
 SilkWorm 24000 Physical Slot/Ports Converted to Hex Tag Field Values

Table B-2 converts the SilkWorm 12000 physical slot/ports to hexadecimal tag field values. In the table, the "___" in the tag represents a 2-digit hexadecimal number and can be replaced by the switch domain ID for any given switch.

Logi	Logical Switch 0							CP SI	ots	Logical Switch 1							
Slot	1	Slot	2	Slot	3	Slot	4	Slot 5	Slot 6	Slot	7	Slot	Slot 8 Slot 9 S		Slot	Slot 10	
Por t	Тад	Por t	Tag	Por t	Тад	Por t	Тад	CP1	CP2	Por t	Tag	Por t	Tag	Por t	Тад	Por t	Tag
15	0f	15	1f	15	2f	15	3f			15	0f	15	1f	15	2f	15	3f
14	0e	14	_le	14	2e	14	3e			14	0e	14	1e	14	2e	14	3e
13	0d	13	1d	13	2d	13	3d			13	0d	13	1d	13	2d	13	3d
12	0c	12	_1c	12	2c	12	3c			12	0c	12	1c	12	2c	12	3c
11	0b	11	_1b	11	2b	11	3b			11	0b	11	_1b	11	2b	11	3b
10	0a	10	1a	10	2a	10	3a			10	0a	10	1a	10	2a	10	3a
9	09	9	19	9	29	9	39			9	09	9	19	9	29	9	39
8	08	8	18	8	28	8	38			8	08	8	18	8	28	8	38
7	07	7	17	7	27	7	37			7	07	7	17	7	27	7	37
6	06	6	16	6	26	6	36			6	06	6	16	6	26	6	36
5	05	5	15	5	25	5	35			5	05	5	15	5	25	5	35
4	04	4	14	4	24	4	34			4	04	4	14	4	24	4	34
3	03	3	13	3	23	3	33			3	03	3	13	3	23	3	33
2	02	2	12	2	22	2	32			2	02	2	12	2	22	2	32
1	01	1	11	1	21	1	31			1	01	1	11	1	21	1	31
0	00	0	10	0	20	0	30			0	00	0	_10	0	20	0	30

 Table B-2
 SilkWorm 12000 Physical Slot/Ports Converted to Hex Tag Field Values

For the Silkworm 3900, 3850 and 3250 switches, which do not have slots, the lower byte of the tag field is simply the hexadecimal equivalent of the port number.

В

Q: How many characters can a password have?

A: Passwords can be a minimum of 8 characters and a maximum of 40 characters.

Q: Does a new password have to be set to something different from the old password?

A: Yes

Q: Does the end user have to know the old password when changing passwords using the passwd command?

A: The end user is prompted to use the old password when the account that is being changed has the same or higher privilege than the login account. For example, if the login account is admin, the old admin password is required to change the admin password. However, the old user password is not required for the admin account to change the user account password, except when it is initially changed.

Q: Can the passwd command change higher-level passwords? For example, can admin level change root level passwords?

A: Yes. If an end user connects as an administrator, the end user can change root, factory, and admin passwords. However, if you connect as a user, you can only change the user password. To change a higher -evel account, it is necessary to provide the high level account old password to change the old account password.

Q: Can SNMP change passwords?

A: No

Q: When is the end user prompted to change the password?

A: When you first connect as root, factory, or admin you will be prompted to change the password, if the password is still default. Accounts with nondefault passwords will not be prompted.

Q: Do users need to know the old root password when answering prompting?

A: No

Q: Is the password prompting disabled when security mode is enabled?

A: Yes

Q: Can Web Tools change passwords?

A: No

Q: When the user upgrades to a newer firmware release for the first time, which passwords will be used?

A: When you upgrade from v4.0.x to v4.1.0 or later for the first time, the v4.0.x passwords will be preserved.

Q: When the user upgrades to a newer firmware release at subsequent times, which passwords will be used?

A: When you upgrade from v4.0.x to v4.1.0 or later for a second time and beyond the passwords that were used the last time in v4.0.x are effective.

Q: When the user downgrades to an older firmware release for the first time, which passwords will be used?

A: When you downgrade from v4.1.0 or later to v4.0.x, the default passwords should be used if v4.1.0 was already installed.

Q: When the user downgrades to an older firmware at subsequent times, which passwords will be used?

A: When you downgrade from v4.1.0 or later to v4.0.x, the previous passwords from v4.0.x before the firmware upgrade to v4.1.0 should be used.

Q: Is the end user forced to answer password prompts before gaining access to the firmware?

A: No. You can bypass the password prompting by using Ctrl-Cor by pressing Enter after each prompt.

Q: What is a PID?

A: A PID is a port identifier. PIDs are used by the routing and zoning services in Fibre Channel fabrics to identify ports in the network. They are not used to uniquely identify a device; the World Wide Name (WWN) does that.

Q: What situations can cause a PID to change?

A: Many scenarios cause a device to receive a new PID. For example, unplugging the device from one port and plugging it into a different port (this might happen when cabling around a bad port or when moving equipment around). Another example is changing the domain ID of a switch, which might be necessary when merging fabrics, or changing compatibility mode settings.

Q: Why do some devices handle a PID change well, and some poorly?

A: Some older device drivers behave as if a PID uniquely identifies a device. These device drivers should be updated if possible to use WWN binding instead. PID binding creates problems in many routine maintenance scenarios. Fortunately, very few device drivers still behave this way, and those that do are expected to be updated. Many current device drivers enable binding by PID. Only select this method if there is a compelling reason, and only after you have evaluated the impact of doing so.

Q: Must I schedule downtime for my SAN to change the PID format?

A: Only if you have devices that bind by PID or do not have dual-fabrics.

Q: Must I stop all traffic on the SAN before performing the update?

A: If you are running dual fabrics with multipathing software, you can update one fabric at a time. Move all traffic onto one fabric in the SAN, update the other fabric, move the traffic onto the updated fabric, and update the final fabric. Without dual fabrics, stopping traffic is highly recommended. This is the case for many routine maintenance situations, so dual fabrics are always recommended for uptime-sensitive environments.

Q: How can I avoid having to change PID formats on fabrics in the future?

A: The Extended Edge PID format can be proactively set on a fabric at initial installation. The update could also be opportunistically combined with any scheduled outage. Setting the format proactively far in advance of adoption of higher port count switches is the best way to ensure administrative ease.

Q: Where can I get more information about upgrading to larger switches?

A: The *SilkWorm 12000 Core Migration User's Guide* and *SilkWorm 12000 Design, Deployment and Management Guide* are available on the partner Web site. If you do not have access to this site, ask your support provider for these documents.

#

Α

	b/10b oding	An encoding scheme that converts each 8-bit byte into 10 bits. Used to balance 1s and 0s in high-speed transports.
Α		
	ABTS	Abort Basic Link Service. Also referred to as "Abort Sequence."
	ACC	Accept link service reply. The normal reply to an Extended Link Service request (such as FLOGI), indicating that the request has been completed.
	dress ntifier	A 24-bit or 8-bit value used to identify the source or destination of a frame. Refer to S_ID and DID.
А	L_PA	Arbitrated loop physical address. A unique 8-bit value assigned during loop initialization to a port in an arbitrated loop. Alternately, "arbitrated loop parameters."
AL_	TIME	Arbitrated loop timeout value. Twice the amount of time it would take for a transmission word to propagate around a worst-case loop. The default value is 15 milliseconds (ms).
	alias	A logical grouping of elements in a fabric. An alias is a collection of port numbers and connected devices, used to simplify the entry of port numbers and WWNs when creating zones.
alias ado ider	dress ntifier	An address identifier recognized by a port in addition to its standard identifier. An alias address identifier can be shared by multiple ports. <i>See also alias</i> .
alias A	L_PA	An AL_PA value recognized by an L_Port in addition to the AL_PA assigned to the port. <i>See also AL_PA</i> .
alias s	erver	A fabric software facility that supports multicast group management.
	ARB	Arbitrative primitive signal. Applies only to an arbitrated loop topology. Transmitted as the fill word by an L_Port to indicate that the port is arbitrating access to the loop.
arbitrated	l loop	A shared 100-MB/sec Fibre Channel transport structured as a loop. Can support up to 126 devices and one fabric attachment. <i>See also topology</i> .
arbitr	ration	A method of gaining orderly access to a shared-loop topology.

area number	In Brocade Fabric OS v4.0 and above, ports on a switch are assigned a logical area number. Port area numbers can be viewed by entering the switchshow command. They are used to define the operative port for many Fabric OS commands: for example, area numbers can be used to define the ports within an alias or zone.
ARR	Asynchronous response router. Refers to Management Server GS_Subtype Code E4, which appears in portlogdump command output.
ASD	Alias server daemon. Used for managing multicast groups by supporting the create, add, remove, and destroy functions.
ASIC	Application-specific integrated circuit. [Necessary? Basiced.]
АТМ	Asynchronous Transfer Mode. A transport used for transmitting data over LANs or WANs that transmit fixed-length units of data. Provides any-to-any connectivity and allows nodes to transmit simultaneously.
authentication	The process of verifying that an entity in a fabric (such as a switch) is what it claims to be. <i>See also digital certificate, switch-to-switch authentication</i> .
autocommit	A feature of the firmwaredownload command. Enabled by default, autocommit commits new firmware to both partitions of a control processor.
autoreboot	Refers to the -b option of the firmwaredownload command. Enabled by default.

В

BB_Credit	Buffer-to-buffer credit. The number of frames that can be transmitted to a directly connected recipient or within an arbitrated loop. Determined by the number of receive buffers available. <i>See also buffer-to-buffer flow control</i> .
beacon	A tool in which all of the port LEDs on a switch are set to flash from one side of the switch to the other, to enable identification of an individual switch in a large fabric. A switch can be set to beacon by a CLI command or through Brocade Web Tools.
beginning running disparity	The disparity at the transmitter or receiver when the special character associated with an ordered set is encoded or decoded. <i>See also disparity</i> .
BIST	Built-in self-test.
bit synchroniza- tion	The condition in which a receiver is delivering retimed serial data at the required bit error rate.
block	As it applies to Fibre Channel technology, upper-level application data that is transferred in a single sequence.
bloom	The code name given to the third-generation Brocade Fabric ASIC. This ASIC is used in SilkWorm switches 3000 series and beyond.

broadcast	The transmission of data from a single source to all devices in the fabric, regardless of zoning. <i>See also multicast, unicast.</i>
buffer-to- buffer flow control	Management of the frame transmission rate in either a point-to-point topology or in an arbitrated loop. <i>See also BB_Credit</i> .
bypass circuitry	Circuits that automatically remove a device from the data path when valid signals are dropped.
С	
CA	Certificate authority. A trusted organization that issues digital certificates. See also digital certificate.
CAM	Content-addressable memory.
Class 1 service	The class of frame-switching service for a dedicated connection between two communicating ports (also called "connection-oriented service"). Includes acknowledgement of frame delivery or nondelivery.
Class 2 service	A connectionless class of frame-switching service that includes acknowledgement of frame delivery or nondelivery.
Class 3 service	A connectionless class of frame-switching service that does not include acknowledgement of frame delivery or nondelivery. Can be used to provide a multicast connection between the frame originator and recipients, with acknowledgement of frame delivery or nondelivery.
Class 4 service	A connection-oriented service that allows fractional parts of the bandwidth to be used in a virtual circuit.
Class 6 service	A connection-oriented multicast service geared toward video broadcasts between a central server and clients.
Class F service	The class of frame-switching service for a direct connection between two switches, allowing communication of control traffic between the E_Ports. Includes acknowledgement of data delivery or nondelivery.
class of service	A specified set of delivery characteristics and attributes for frame delivery.
CLS	Close primitive signal. Used only in an arbitrated loop. Sent by an L_Port that is currently communicating in the loop, to close communication to another L_Port.
configuration	(1) A set of parameters that can be modified to fine-tune the operation of a switch. Use the configshow command to view the current configuration of your switch.
	(2) In Brocade Zoning, a zoning element that contains a set of zones. The Configuration is the highest- level zoning element and is used to enable or disable a set of zones on the fabric. <i>See also zone</i> <i>configuration</i> .
COS	Class of service

COS Class of service.

- **CP** Control processor.
- **credit** As it applies to Fibre Channel technology, the number of receive buffers available to transmit frames between ports. *See also BB Credit*.

D

D_ID Destination identifier. A 3-byte field in the frame header, used to indicate the address identifier of the N Port to which the frame is headed. defined zone The set of all zone objects defined in the fabric. Can include multiple zone configurations. See also zone configuration configuration. digital An electronic document issued by a CA (certificate authority) to an entity, containing the public key and certificate identity of the entity. Entities in a secure fabric are authenticated based on these certificates. See also authentication, CA, public key. disparity The proportion of 1s and 0s in an encoded character. "Neutral disparity" means an equal number of each, "positive disparity" means a majority of 1s, and "negative disparity" means a majority of 0s. DLS Dynamic load-sharing. Dynamic distribution of traffic over available paths. Allows for recomputing of routes when an Fx Port or E Port changes status. domain A domain controller (or embedded port) communicates with and gets updates from other switches' controller embedded ports. The well-known address is *fffcdd*, where dd = domain number). domain ID A unique identifier for all switches in a fabric, used in routing frames. Usually automatically assigned by the principal switch but can be assigned manually. The domain ID for a Brocade SilkWorm switch can be any integer between 1 and 239.

Ε

- **E_D_TOV** Error-detect timeout value. The minimum amount of time a target waits for a sequence to complete before initiating recovery. Can also be defined as the maximum time allowed for a round-trip transmission before an error is declared. *See also R_A_TOV, RR_TOV.*
 - **E_Port** Expansion port. A type of switch port that can be connected to an E_Port on another switch to create an ISL. *See also ISL*.
 - **ELP** Exchange link parameters.
 - **ELS** Extended link service. ELSs are sent to the destination N_Port to perform the requested function or service. ELS is a Fibre Channel standard that is sometimes referred to as "Fibre Channel Physical (FC PH) ELS."
 - **EM** Environmental monitor. Monitors FRUs and reports failures.

embedded port An embedded port (or domain controller) communicates and get updates from other switches' embedded ports. The well-known address is *fffcdd*, where dd = domain number.

entry fabric	The basic Brocade software license that allows one E_Port per switch.
EOF	End of frame. A group of ordered sets used to mark the end of a frame.
error	As it applies to the Fibre Channel industry, a missing or corrupted frame, timeout, loss of synchronization, or loss of signal (link errors).
exchange	The highest-level Fibre Channel mechanism used for communication between N_Ports. Composed of one or more related sequences, it can work in either one or both directions.
F_BSY	Fabric port busy frame. A frame issued by the fabric to indicate that a frame cannot be delivered

- F_Port Fabric port. A port that is able to transmit under fabric protocol and interface over links. Can be used to connect an N_Port to a switch. *See also FL_Port, Fx_Port.*F_RJT Fabric port reject frame. A frame issued by the fabric to indicate that delivery of a frame is being denied, perhaps because a class is not supported, there is an invalid header, or no N_Port is available.
 fabric A Fibre Channel network containing two or more switches in addition to hosts and devices. Also referred to as a "switched fabric." *See also SAN, topology.*
- FabricAn optionally licensed Brocade software. Fabric Manager is a GUI that allows for fabric-wideManageradministration and management. Switches can be treated as groups, and actions such as firmware
downloads can be performed simultaneously.
- fabric name The unique identifier assigned to a fabric and communicated during login and port discovery.
- fabric services Codes that describe the communication to and from any well-known address.

because the fabric or destination N Port is busy.

- **fabric topology** The arrangement of switches that form a fabric.
 - **Fabric Watch** An optionally licensed Brocade software. Fabric Watch can be accessed through either the command line or Advanced Web Tools, and it provides the ability to set thresholds for monitoring fabric conditions.
 - **failover** Describes the Brocade SilkWorm 12000 process of one CP passing active status to another CP. A failover is nondisruptive.
 - **FAN** Fabric address notification. Retains the AL_PA and fabric address when a loop reinitializes, if the switch supports FAN.
 - **FC-0** Lowest layer of Fibre Channel transport. Represents physical media.
 - **FC-1** Layer of Fibre Channel transport that contains the 8b/10b encoding scheme.
 - **FC-2** Layer of Fibre Channel transport that handles framing and protocol, frame format, sequence/exchange management, and ordered set usage.

F

- **FC-3** Layer of Fibre Channel transport that contains common services used by multiple N_Ports in a node.
- **FC-4** Layer of Fibre Channel transport that handles standards and profiles for mapping upper-level protocols such as SCSI and IP onto the Fibre Channel Protocol.
- **FC-CT** Fibre Channel common transport.
- **FC-FG** Fibre Channel generic requirements.
- **FC-GS** Fibre Channel generic services.
- **FC-GS-2** Fibre Channel generic services, second generation.
- **FC-GS-3** Fibre Channel Generic Services, third generation.
 - **FC_IP** Fibre Channel-Over-IP.
 - **FC-PH** The Fibre Channel physical and signaling standard for FC-0, FC-1, and FC-2 layers of the Fibre Channel Protocol. Indicates signaling used for cable plants, media types, and transmission speeds.
 - **FCP** Fibre Channel Protocol. Mapping of protocols onto the Fibre Channel standard protocols. For example, SCSI FCP maps SCSI-3 onto Fibre Channel.
 - **FCS** See Fibre Channel Standard.
- **FCS switch** Relates to the Brocade Secure Fabric OS feature. One or more designated switches that store and manage security parameters and configuration data for all switches in the fabric. They also act as a set of backup switches to the primary FCS switch. *See also primary FCS switch*.
 - **FC-SW-2** The second-generation Fibre Channel Switch Fabric standard defined by ANSI. Specifies tools and algorithms for the interconnection and initialization of Fibre Channel switches to create a multiswitch Fibre Channel fabric.
 - **FDMI** Fabric-Device Management Interface. FDMI is a database service provided by the fabric for Nx_Ports. The primary use is by HBA devices that register information about themselves and their ports.
 - **FFFFF5** Well-known Fibre Channel address for a Class 6 multicast server.
 - **FFFFF6** Well-known Fibre Channel address for a clock synchronization server.
 - **FFFFF7** Well-known Fibre Channel address for a security key distribution server.
 - **FFFF8** Well-known Fibre Channel address for an alias server.
 - **FFFF9** Well-known Fibre Channel address for a QoS facilitator.
 - **FFFFA** Well-known Fibre Channel address for a management server.
 - **FFFFB** Well-known Fibre Channel address for a time server.
 - **FFFFC** Well-known Fibre Channel address for a directory server.

FFFFFD	Well-known Fibre Channel address for a fabric controller.
FFFFFE	Well-known Fibre Channel address for a fabric F_Port.
FFFFFF	Well-known Fibre Channel address for a broadcast alias ID.
Fibre Channel	Fibre Channel is a protocol used to transmit data between servers, switches, and storage devices. It is a high-speed, serial, bidirectional, topology-independent, multiprotocol, and highly scalable interconnection between computers, peripherals, and networks.
FICON®	A protocol used on IBM mainframes. Brocade SilkWorm switch FICON® support enables a SilkWorm fabric to transmit FICON® format data between FICON® capable servers and storage.
FIFO	First in, first out. Refers to a data buffer that follows the first in, first out rule.
firmware	The basic operating system provided with the hardware.
FL_Port	Fabric loop port. A port that is able to transmit under fabric protocol and also has arbitrated loop capabilities. Can be used to connect an NL_Port to a switch. See also F_Port , Fx_Port .
flash	Programmable nonvolatile RAM (NVRAM) memory that maintains its contents without power.
FLOGI	Fabric login. The process by which an N_Port determines whether a fabric is present and, if so, exchanges service parameters with it. <i>See also PLOGI</i> .
frame	The Fibre Channel structure used to transmit data between ports. Consists of a start-of-frame delimiter, header, optional headers, data payload, cyclic redundancy check (CRC), and end-of-frame delimiter. There are two types of frames: link control frames (transmission acknowledgements and so forth) and data frames.
FRU	Field-replaceable unit. A component that can be replaced onsite.
FSPF	Fabric shortest path first. The Brocade routing protocol for Fibre Channel switches.
FSS	Fabric OS state synchronization. The FSS service is related to high availability (HA). The primary function of FSS is to deliver state update messages from active components to their peer standby components. FSS determines if fabric elements are synchronized (and thus FSS "compliant").
FTP	File Transfer Protocol.
full fabric	The Brocade software license that allows multiple E_Ports on a switch, making it possible to create multiple ISL links.
full fabric citizenship	A loop device that has an entry in the Simple Name Server.
full-duplex	A mode of communication that allows the same port to simultaneously transmit and receive frames. <i>See also half-duplex</i> .
Fx_Port	A fabric port that can operate as either an F_Port or FL_Port. See also F_Port, FL_Port.

G

н

G_Port	Generic port. A port that can operate as either an E_Port or an F_Port. A port is defined as a G_Port when it is not yet connected or has not yet assumed a specific function in the fabric.
gateway	Hardware that connects incompatible networks by providing translation for both hardware and software. For example, an ATM gateway can be used to connect a Fibre Channel link to an ATM connection.
GBIC	Gigabit interface converter. A removable serial transceiver module that allows gigabaud physical-level transport for Fibre Channel and gigabit Ethernet.
Gb/sec	Gigabits per second (1,062,500,000 bits/second).
GB/sec	Gigabytes per second (1,062,500,000 bytes/second).
GLM	Gigabit Link Module. A semitransparent transceiver that incorporates serializing/deserializing functions.
GMT	Greenwich Mean Time. An international time zone. Also known as "UTC."
GUI	A graphic user interface, such as Brocade Web Tools and Brocade Fabric Manager.
НА	High availability. A set of features in Brocade SilkWorm switches that is designed to provide maximum reliability and nondisruptive replacement of key hardware and software modules.
half-duplex	A mode of communication that allows a port to either transmit or receive frames at any time except simultaneously (with the exception of link control frames, which can be transmitted at any time). <i>See also full-duplex</i> .
hard address	The AL_PA that an NL_Port attempts to acquire during loop initialization.

- **HBA** Host bus adapter. The interface card between a server or workstation bus and the Fibre Channel network.
- **header** A Fibre Channel frame has a header and a payload. The header contains control and addressing information associated with the frame.
- **HiPPI** High-Performance Parallel Interface. An 800 Mb/sec interface normally used in supercomputer environments.
- **hop count** The number of ISLs a frame must traverse to get from its source to its destination.
 - **host** A computer system that provides end users with services like computation and storage access.
 - **HTTP** Hypertext Transfer Protocol. The standard TCP/IP transfer protocol used on the World Wide Web.
 - **hub** A Fibre Channel wiring concentrator that collapses a loop topology into a physical star topology. Nodes are automatically added to the loop when active and removed when inactive.

J

Κ

I2C	Related to internal circuitry on motherboard. [Is this useful?]
idle	Continuous transmission of an ordered set over a Fibre Channel link when no data is being transmitted, to keep the link active and maintain bit, byte, and word synchronization.
in-band	Transmission of management protocol over the Fibre Channel.
initiator	A server or workstation on a Fibre Channel network that initiates communications with storage devices. <i>See also target</i> .
Insistent Domain ID Mode	Sets the domain ID of a switch as insistent, so that it remains the same over reboots, power cycles, failovers, and fabric reconfigurations. This mode is required to support FICON® traffic.
interswitch link	See ISL.
IOCTL	I/O control.
IP	Internet Protocol. The addressing part of TCP.
ISL	Interswitch link. A Fibre Channel link from the E_Port of one switch to the E_Port of another. See also E_Port .
isolated E_Port	An E_Port that is online but not operational due to overlapping domain IDs or nonidentical parameters (such as E_D_TOVs). <i>See also E_Port</i> .
IU	Information unit. A set of information as defined by either an upper-level process protocol definition or upper-level protocol mapping.
JBOD	"Just a bunch of disks." Indicates a number of disks connected in a single chassis to one or more controllers. <i>See also RAID</i> .
K28.5	A special 10-bit character used to indicate the beginning of a transmission word that performs Fibre Channel control and signaling functions. The first seven bits of the character are the comma pattern.
key	A string of data (usually a numeric value) shared between two entities and used to control a cryptographic algorithm. Usually selected from a large pool of possible keys to make unauthorized identification of the key difficult. <i>See also key pair</i> .

key pair In public key cryptography, a pair of keys consisting of an entity's public and private key. The public key can be publicized, but the private key must be kept secret. *See also public key cryptography*.

L

L_Port	Loop port. A node port (NL_Port) or fabric port (FL_Port) that has arbitrated loop capabilities. An L_Port can be in either Fabric Mode or Loop Mode.
LAN	Local area network. A network in which transmissions typically take place over fewer than 5 kilometers (3.4 miles).
latency	The time required to transmit a frame. Together, latency and bandwidth define the speed and capacity of a link or system.
LED	Light-emitting diode. Used to indicate the status of elements on a switch.
LIFA	Loop-initialization fabric-assigned frame. Contains a bitmap of all fabric-assigned AL_PAs and is the first frame transmitted in the loop initialization process after a temporary loop master has been selected.
LIHA	Loop-initialization hard-assigned frame. A hard-assigned AL_PA that is indicated by a bit set and is the third frame transmitted in the loop initialization process after a temporary loop master has been selected.
LILP	Loop-initialization loop-position frame. The final frame transmitted in a loop initialization process. A returned LIRP contains an accumulation of all of the AL_PA position maps. This allows loop members to determine their relative loop position. This is an optional frame and is not transmitted unless the LIRP is also transmitted.
Link Services	A protocol for link-related actions.
LIP	Loop initialization primitive. The signal used to begin initialization in a loop. Indicates either loop failure or node resetting.
LIPA	Loop-initialization previously assigned. The device marks a bit in the bitmap if it did not log in with the fabric in a previous loop initialization.
LIRP	Loop-initialization report position frame. The first frame transmitted in the loop initialization process after all L_Ports have selected an AL_PA. The LIRP gets transmitted around the loop so all L_Ports can report their relative physical position. This is an optional frame.
LISA	Loop-initialization soft-assigned frame. The fourth frame transmitted in the loop initialization process after a temporary loop master has been selected. L_Ports that have not selected an AL_PA in a LIFA, LIPA, or LIHA frame select their AL_PA here.
LISM	Loop-initialization select master frame. The first frame transmitted in the initialization process when L_Ports select an AL_PA. LISM is used to select a temporary loop master or the L_Port that will subsequently start transmission of the LIFA, LIPA, LIHA, LISA, LIRP, or LILP frames.
LM_TOV	Loop master timeout value. The minimum time that the loop master waits for a loop initialization sequence to return.
loop initialization	The logical procedure used by an L_Port to discover its environment. Can be used to assign AL_PA addresses, detect loop failure, or reset a node.
looplet	A set of devices connected in a loop to a port that is a member of another loop.

- **LR** Link reset. A primitive sequence used during link initialization between two N_Ports in point-to-point topology or an N_Port and an F_Port in fabric topology. The expected response is an LRR.
- **LRR** Link reset response. A primitive sequence during link initialization between two N_Ports in point-topoint topology or an N_Port and an F_Port in fabric topology. It is sent in response to an LR and expects a response of Idle.

Μ

Ν

MALLOC	Memory allocation. Usually relates to buffer credits.
MB/sec	Megabytes per second.
Mb/sec	Megabits per second.
metric	A relative value assigned to a route to aid in calculating the shortest path (1000 @ 1 Gb/sec, 500 @ 2 Gb/sec).
MIB	Management Information Base. An SNMP structure to help with device management, providing configuration and device information.
MRK	Mark primitive signal. Used only in arbitrated loop, MRK is transmitted by an L_Port for synchronization and is vendor specific.
MS	Management Server. The Management Server allows a storage area network (SAN) management application to retrieve information and administer the fabric and interconnected elements, such as switches, servers, and storage devices. The MS is located at the Fibre Channel well-known address FFFFFAh.
multicast	The transmission of data from a single source to multiple specified N_Ports (as opposed to all the ports on the network). <i>See also broadcast, unicast.</i>
l	
N_Port	Node port. A port on a node that can connect to a Fibre Channel port or to another N_Port in a point-to-point connection. <i>See also NL_Port, Nx_Port.</i>
Name Server	Simple Name Server (SNS). A switch service that stores names, addresses, and attributes for up to 15 minutes and provides them as required to other devices in the fabric. SNS is defined by Fibre Channel standards and exists at a well-known address. Also referred to as "directory service."
NL_Port	Node loop port. A node port that has arbitrated loop capabilities. Used to connect an equipment port to the fabric in a loop configuration through an FL_Port. <i>See also N_Port</i> , <i>Nx_Port</i> .
node	A Fibre Channel device that contains an N_Port or NL_Port.
node count	The number of nodes attached to a fabric.
node name	The unique identifier for a node, communicated during login and port discovery.

NOS	Not operational. The NOS primitive sequence is transmitted to indicate that the FC_Port transmitting the NOS has detected a link failure or is offline, waiting for the offline sequence (OLS) to be received.
NS	Name Server. The service provided by a fabric switch that stores names, addresses, and attributes related to Fibre Channel objects. Can cache information for up to 15 minutes. Also known as "Simple Name Server" or as a "directory service." <i>See also SNS</i> .
Nx_Port	A node port that can operate as either an N_Port or NL_Port.
0	
OLS	Primitive sequence offline.
ON	Offline notification. Refers to an ELS field that appears in portlogdump command output.
OPN	Open primitive signal. Applies only to arbitrated loop; sent by an L_Port that has won the arbitration process to open communication with one or more ports on the loop.
ordered set	A transmission word that uses 8B/10B mapping and begins with the K28.5 character. Ordered sets occur outside of frames and include the following items:
	Frame delimiters. Mark frame boundaries and describe frame contents.
	Primitive signals. Indicate events.
	Primitive sequences. Indicate or initiate port states.
	Ordered sets are used to differentiate Fibre Channel control information from data frames and to manage frame transport.
originator	The Nx_Port that originated an exchange.
out-of-band	Transmission of management protocol outside of the Fibre Channel network, usually over Ethernet.
OX_ID	Originator ID. Refers to the exchange ID assigned by the originator port.
Р	
parallel	The simultaneous transmission of data bits over multiple lines.
path selection	The selection of a transmission path through the fabric. Brocade switches use the FSPF protocol. See

- also FSPF.
 - **payload** A Fibre Channel frame has a header and a payload. The payload contains the information being transported by the frame; it is determined by the higher-level service or FC_4 upper-level protocol. There are many different payload formats, based on protocol and size of truck bed.

Performance
MonitoringA Brocade SilkWorm switch feature that monitors port traffic and includes frame counters, SCSI read
monitors, SCSI write monitors, and other types of monitors.

persistent error log	Error messages of a high enough level (by default, Panic or Critical) are saved to flash memory on the switch instead of to RAM. These messages are saved over reboots and power cycles, constituting the persistent error log. Note that each CP on a SilkWorm 12000 has its own unique persistent error log.
phantom address	An AL_PA value that is assigned to a device that is not physically in the loop. Also known as "phantom AL_PA."
phantom device	A device that is not physically in an arbitrated loop but is logically included through the use of a phantom address.
PID	Port identifier.
РКІ	Public key infrastructure. An infrastructure that is based on public key cryptography and CA (certificate authority) and that uses digital certificates. <i>See also CA</i> , <i>digital certificate</i> , <i>public key cryptography</i> .
PKI certification utility	Public key infrastructure certification utility. A utility that makes it possible to collect certificate requests from switches and to load certificates to switches. <i>See also digital certificate</i> , <i>PKI</i> .
PLOGI	Port login. The port-to-port login process by which initiators establish sessions with targets. <i>See also FLOGI</i> .
point-to-point	A Fibre Channel topology that employs direct links between each pair of communicating entities. <i>See also topology</i> .
port	In a Brocade SilkWorm switch environment, an SFP or GBIC receptacle on a switch to which an optic cable for another device is attached.
port address	In Fibre Channel technology, the port address is defined in hexadecimal. In the Brocade Fabric OS, a port address can be defined by a domain and port number combination or by area number. In an ESCON Director, an address used to specify port connectivity parameters and to assign link addresses for attached channels and control units.
port card	A hardware component that provides a platform for field-replaceable, hot-swappable ports.
port log	A record of all activity on a switch, kept in volatile memory.
port log dump	A view of what happens on a switch, from the switch's point of view. The portlogdump command is used to read the port log.
port name	A user-defined alphanumeric name for a port.
port swapping	Port swapping is the ability to redirect a failed port to another port. This feature is available in Fabric OS v4.1.0 and higher.
port_name	The unique identifier assigned to a Fibre Channel port. Communicated during login and port discovery.
POST	Power-on self-test. A series of tests run by a switch after it is turned on.
primary FCS switch	Relates to the Brocade Secure Fabric OS feature. The primary fabric configuration server switch actively manages security and configurations for all switches in the fabric.

primitive sequence	An ordered set that is transmitted repeatedly and continuously. Primitive sequences are transmitted to indicate specific conditions within or conditions encountered by the receiver logic of an FC_Port. <i>See OLS and NOS</i> .
primitive signals	An ordered set that indicates actions or events and requires just one occurrence to trigger a response. Idle and R_RDY are used in all three topologies: ARB, OPN, and CLS. MRK is used in arbitrated loop.
principal switch	The first switch to boot up in a fabric. Ensures unique domain IDs among roles.
private key	The secret half of a key pair. See also key, key pair.
private loop	An arbitrated loop that does not include a participating FL_Port.
private loop device	A device that supports a loop and can understand 8-bit addresses but does not log in to the fabric.
private NL_Port	An NL_Port that communicates only with other private NL_Ports in the same loop and does not log in to the fabric.
protocol	A defined method and set of standards for communication. Determines the type of error-checking, the data-compression method, how sending devices indicate an end of message, and how receiving devices indicate receipt of a message.
pstate	Port State Machine.
public device	A device that supports arbitrated loop protocol, can interpret 8-bit addresses, and can log in to the fabric.
public key	The public half of a key pair. See also key, key pair.
public key cryptography	A type of cryptography that uses a key pair, with the two keys in the pair called at different points in the algorithm. The sender uses the recipient's public key to encrypt the message, and the recipient uses the recipient's private key to decrypt it. <i>See also key pair</i> , <i>PKI</i> .
public loop	An arbitrated loop that includes a participating FL_Port and can contain both public and private NL_Ports.
public NL_Port	An NL_Port that logs in to the fabric, can function within either a public or a private loop, and can communicate with either private or public NL_Ports.
Q	
QoS	Quality of service.
quad	A group of four adjacent ports that share a common pool of frame buffers.

queue A mechanism for each AL_PA address that allows for collecting frames prior to sending them to the loop.

R

R_A_TOV Resource allocation timeout value. The maximum time a frame can be delayed in the fabric and still be delivered. See also E D TOV, RR TOV. R_CTL Route control. The first 8 bits of the header, which defines the type of frame and its contents. R_RDY Receiver ready. A primitive signal indicating that the port is ready to receive a frame. R_T_TOV Receiver transmitter timeout value, used by receiver logic to detect loss of synchronization between transmitters and receivers. RAID Redundant array of independent disks. A collection of disk drives that appear as a single volume to the server and are fault tolerant through mirroring or parity checking. See also JBOD. RCS Reliable Commit Service. Refers to Brocade-specific ILS command code. remote switch An optional product for long-distance fabrics, requiring a Fibre Channel-to-ATM or SONET gateway. responder The N Port with which an exchange originator wishes to communicate. RLS Read Link Status. route As it applies to a fabric, the communication path between two switches. Might also apply to the specific path taken by an individual frame, from source to destination. See also FSPF. The assignment of frames to specific switch ports, according to frame destination. routing **RR_TOV** Resource recovery timeout value. The minimum time a target device in a loop waits after a LIP before logging out an SCSI initiator. See also E D TOV, R A TOV. RSCN Registered state change notification. A switch function that allows notification of fabric changes to be sent from the switch to specified nodes. The fabric controller issues RSCN requests to N Ports and NL Ports, but only if they have registered to be notified of state changes in other N Ports and NL Ports. This registration is performed via the State Change Registration (SCR) Extended Link Service. An N Port or NL Port can issue an RSCN to the fabric controller without having completed SCR with the fabric controller. RTWR Reliable transport with response. Might appear as a task in **portlogdump** command output. running A binary parameter indicating the cumulative disparity (positive or negative) of all previously issued disparity transmission characters. RW Read/write. Refers to access rights. RX Receiving frames. RX_ID Responder exchange identifier. A 2-byte field in the frame header that can be used by the responder of the exchange to identify frames as being part of a particular exchange.

S_ID Source ID. Refers to the native port address (24 bit address).

SAN Storage area network. A network of systems and storage devices that communicate using Fibre Channel protocols. *See also fabric*.

SAN The overall design of a storage network solution, which includes one or more related fabrics, each of which has a topology.

- **SAN port** The number of ports available for connection by nodes in the entire SAN. **count**
 - **SCN** State change notification. Used for internal state change notifications, not external changes. This is the switch logging that the port is online or is an Fx_port, not what is sent from the switch to the Nx_ports.
 - **SCR** State change registration. Extended Link Service (ELS) requests the fabric controller to add the N_Port or NL_Port to the list of N_Ports and NL_Ports registered to receive the Registered State Change Notification (RSCN) Extended Link Service.
 - **SCSI** Small Computer Systems Interface. A parallel bus architecture and a protocol for transmitting large data blocks to a distance of 15 to 25 meters.
- **sectelnet** A protocol similar to telnet but with encrypted passwords for increased security.
- **Secure Fabric** A separately sold Brocade feature that provides advanced, centralized security for a fabric.
- **security policy** Rules that determine how security is implemented in a fabric. Security policies can be customized through Brocade Secure Fabric OS or Brocade Fabric Manager.
 - **SEQ_ID** Sequence identifier. A 1-byte field in the frame header change to identify the frames as being part of a particular exchange sequence between a pair of ports.
 - sequence A group of related frames transmitted in the same direction between two N_Ports.
 - **sequence** The N_Port that begins a new sequence and transmits frames to another N_Port. **initiator**
 - **sequence** Serializing/deserializing circuitry. A circuit that converts a serial bit stream into parallel characters, and vice-versa.
 - **SES** SCSI Enclosure Services. A subset of the SCSI protocol used to monitor temperature, power, and fan status for enclosed devices.
 - **SFP** Small-form-factor pluggable. A transceiver used on 2 GB/sec switches that replaces the GBIC.
 - **SilkWorm** The brand name for the Brocade family of switches.

Simple Name A switch service that stores names, addresses, and attributes for up to 15 minutes and provides them as required to other devices in the fabric. SNS is defined by Fibre Channel standards and exists at a well-known address. Also referred to as "directory service" or "name server."

S

Single CP Mode	The -s option of the firmwaredownload command. Using firmwaredownload -s enables Single CP Mode. In the SilkWorm 12000, Single CP Mode enables a user to upgrade a single CP and to select full-install, auto-reboot, and auto-commit.
SNMP	Simple Network Management Protocol. An Internet management protocol that uses either IP for network-level functions and UDP for transport-level functions, or TCP/IP for both. Can be made available over other protocols, such as UDP/IP, because it does not rely on the underlying communication protocols.
SNS	Simple Name Server.
SOF	Start of frame. A group of ordered sets that marks the beginning of a frame and indicates the class of service the frame will use.
SONET	Synchronous optical network. A standard for optical networks that provides building blocks and flexible payload mappings.
special character	A 10-bit character that does not have a corresponding 8-bit value but is still considered valid. The special character is used to indicate that a particular transmission word is an ordered set. This is the only type of character to have five 1s or 0s in a row.
SSH	Secure shell. Used starting in Brocade Fabric OS v4.1.0 to support encrypted telnet sessions to the switch. SSH encrypts all messages, including the client sending the password at login.
switch	A fabric device providing bandwidth and high-speed routing of data via link-level addressing.
switch name	The arbitrary name assigned to a switch.
switch port	A port on a switch. Switch ports can be E_Ports, F_Ports, or FL_Ports.
switch-to- switch authentication	The process of authenticating both switches in a switch-to-switch connection using digital certificates. <i>See also authentication, digital certificate.</i>
syslog	Syslog daemon. Used to forward error messages.

Т

T11	A standards committee chartered with creating standards for Fibre Channel.
target	A storage device on a Fibre Channel network. See also initiator.
тс	Track changes.
telnet	A virtual terminal emulation used with TCP/IP. "Telnet" is sometimes used as a synonym for the Brocade Fabric OS CLI.
tenancy	The time from when a port wins arbitration in a loop until the same port returns to the monitoring state. Also referred to as "loop tenancy."
Time Server	A Fibre Channel service that allows for the management of all timers.

topology	As it applies to Fibre Channel technology, the configuration of the Fibre Channel network and the resulting communication paths allowed. There are three possible topologies:
	Point to point. A direct link between two communication ports.
	Switched fabric. Multiple N_Ports linked to a switch by F_Ports.
	Arbitrated loop. Multiple NL_Ports connected in a loop.
track changes	A Brocade Fabric OS feature that can be enabled to report specific activities (for example, logins, logouts, and configuration task changes). The output from the track-changes feature is dumped to the error log for the switch.
transceiver	A device that converts one form of signaling to another for transmission and reception; in fiber optics, optical to electrical.
Translative Mode	A mode in which private devices can communicate with public devices across the fabric.
transmission character	A 10-bit character encoded according to the rules of the 8B/10B algorithm.
transmission word	A group of four transmission characters.
trap (SNMP)	The message sent by an SNMP agent to inform the SNMP management station of a critical error. <i>See also SNMP</i> .
trunking	In Fibre Channel technology, a feature that enables distribution of traffic over the combined bandwidth of up to four ISLs between adjacent switches, while preserving in-order delivery.
trunking group	A set of up to four trunked ISLs.
trunking ports	The ports in a set of trunked ISLs.
TS	Time Server.
TTL	Time-to-live. The number of seconds an entry exists in cache before it expires.
tunneling	A technique for enabling two networks to communicate when the source and destination hosts are both on the same type of network but are connected by a different type of network.
тх	Transmit.
U	
U_Port	Universal port. A switch port that can operate as a G_Port, E_Port, F_Port, or FL_Port. A port is defined as a U_Port when it is not connected or has not yet assumed a specific function in the fabric. [How is this different from a G_Port?]
unicast	The transmission of data from a single source to a single destination. See also broadcast, multicast.

UTC Universal Time Conversion. Also known as "Coordinated Universal Time," which is an international standard of time. UTC is 8 hours behind Pacific Standard Time and 5 hours behind Eastern Standard Time. See also *GMT*.

W

Ζ

WAN	Wide area network.
watchdog	A software daemon that monitors Fabric OS modules on the kernel.
well-known address	As it pertains to Fibre Channel technology, a logical address defined by Fibre Channel standards as assigned to a specific function and stored on the switch.
WWN	World Wide Name. An identifier that is unique worldwide. Each entity in a fabric has a separate WWN.

zone	A set of devices and hosts attached to the same fabric and configured as being in the same zone. Devices and hosts within the same zone have access to others in the zone but are not visible to any outside the zone.
zone configuration	A specified set of zones. Enabling a configuration enables all zones in that configuration. <i>See also defined zone configuration</i> .
zoning	A feature in fabric switches or hubs that allows segmentation of a node by physical port, name, or address.

Symbols

(CS_CTL) IU status values 16-25 (SW_ILS) Switch Fabric Internal Link Services- Payload Frame 16-123

Α

Abort Sequence (ABTS) 16-119 Abort Sequence Frame (ABTS) 16-115 Accept Frame for ABTS 16-116 activating the management server 7-6 adding end-to-end monitors 8-4 filter-based monitors 8-10 adding a WWN to the access control list 7-3 AL_PA monitoring 8-2 Alias 16-111 alias server address 16-141 Alias Service 16-111 Request Code (FC-GS-1) 16-111 args 16-18

В

backing up the system configuration settings 2-10 backup configuration 1-13 Basic Accept Frame for ABTS 16-116 Basic CT_IU Preamble 16-81 BF (Build Fabric) Frame 16-126 blade beacon mode 5-8 Brocade ASIC loop code 16-33 Brocade Specific Code Brocade ASIC Loop Code 16-33 bypass reason code 16-34 LED State Values 16-33 Port Physical State Values 16-33 SW ILS 16-56 switch parameter meanings 16-34 Brocade Web site 1-8 bypass reason code 16-34

Ind ex

С

cascaded configuration 11-4 changing domain ID 11-5 chassishow command 1-11 Class Specific Control Field (CS CTL) 16-25 clearing CRC error count 8-3 end-to-end monitor counters 8-9 filter-based monitor counters 8-14 clearing FICON management database 11-18 clearing the management server database 7-6 Cmd 16-15 command chassishow 1-11 configshow 1-10 configupload 1-10 configure 1-10 fabricshow 1-12 hashow 1-11 licenseadd 1-9 licenseshow 1-9, 1-10 nsallshow 1-13 nsshow 1-13 slotshow 1-11 switchshow 1-11 command code ELS 16-47 fabric service response 16-76 name server 16-88 SW ILS 16-56 command/response code 16-83 NSS CT 16-92 server-to-server 16-91 configshow command 1-10 configupload command 1-10 configuration backup 1-13 save to a host 1-14 Configuration Operations 16-67 configuration settings 11-3 configuration worksheet A-1 configurations cascaded 11-4 switched point-to-point 11-4 configure command 1-10

```
configuring
   software features 1-11
configuring access to the management server 7-2
configuring the in-order delivery option 2-21
configuring the policy threshold values 2-17
configuring the switch 11-3
CRC errors, displaying 8-2
create an alias 10-2, 10-6, 10-9
ст 16-129
CT IU
   Preamble 16-129
CT IU Preamble
   CT-IU Request 16-129
CT IU Preamble (basic) 16-81
CT IU Response 16-131
   GA NXT (0100) 16-131
   GCS-ID (0114) 16-133
   GFD ID (011E) 16-135
   GFF_ID (011F) 16-135
   GFPN ID (011C) 16-134
   GFT-ID (0117) 16-133
   GHA ID (011D) 16-134
   GID A (0101) 16-132
   GID ID (011E) 16-135
   GID PT (01A1) 16-136
   GIPP_ID (011A) 16-134
   GIPP_ID (011E) 16-135
   GNN FD (0173) 16-134
   GNN-ID (0113) 16-132
   GPN ID (0112) 16-132
   GPT ID (011A) 16-133
   GSPN_ID (0118) 16-133
CT Rev 16-82
ctin and ctout Event Example 16-83
ctin event
   decoding 16-112
CT-IU
   Request 16-129
CT-IU Request 16-129
   GFD_ID (011E) 16-130
   GID_NN (0131) 16-130
   GID PT (01A1) 16-131
   GIPP PN (012B) 16-130
   GNN_FT (0173) 16-131
ctout event
   decoding 16-112
```

D

Data Field Control (DF_CTL) 16-24 optional headers 16-24 Data Field/Payload 16-24 database, clearing 11-18 deactivating the management server 7-7 debugging 9-7 Decoding a ctin event 16-112 default names 1-7 definition args 16-18 Class Specific Control Field (CS CTL) 16-25 Cmd 16-15 Command/Response Code Field 16-83 CT Rev 16-82 data Field Control (DF CTL) 16-24 Data Field/Payload 16-24 event 16-15 FC-CT 16-82 Frame Control (F CTL) 16-22 GS Subtype 16-82 GS Type Value 16-82 IN ID 16-82 Originator ID (OX ID) 16-23 port 16-15 Responder ID (RX ID) 16-23 Routing Control Bits (R CTL) 16-20 Routing Control bits (R CTL) Routing Control bits (R CTL) 16-20 RSCN 16-26 SCN 16-26 Sequence Count (SEQ CNT) 16-23 Sequence ID (SEQ ID) 16-23 task 16-12 time 16-12 type code 16-24 delete an alias 10-4, 10-5, 10-8, 10-11 deleting end-to-end monitors 8-9 filter-based monitors 8-13 deleting a WWN from the access control list 7-4 deskew values displaying 9-6 determine the area ID of a port 5-2 device connecting 1-12

DIA Accept Frame 16-125 Request frame 16-125 disable a blade 5-3 disabling IDID Mode 11-8 port swapping 11-16 disabling a port 2-2 disabling a switch 2-1 disabling interoperability mode 12-6 disabling trunking 9-4 display the status of all slots in the chassis 5-4 displaying CRC error count 8-2 end-to-end mask 8-7 end-to-end monitors 8-7 filter-based monitors 8-13 link incidents 11-11 node identification data 11-12 registered listeners for link incidents 11-12 displaying a summary of port errors 14-14 displaying hardware statistics for a port 14-13 displaying information about a switch 14-11 displaying software statistics for a port 14-12 displaying the access control list 7-2 displaying the error log of a switch 14-5 displaying the firmware version 2-2 displaying the management server database 7-6 displaying the status of a port 14-12 displaying the switch status 14-11 displaying the uptime of the switch 14-12 displaying whether track changes is enabled 2-21 DISTANCE code values 16-36 Domain ID List Format 16-125 domain ID, changing 11-5 DWDM 9-7

Ε

ELP

Accept Frame 16-124 Request Frame 16-124

ELS 16-46 command code 16-47 example 16-53 examples 16-53 enable a blade 5-3 enabling IDID Mode 11-8 port swapping 11-16 enabling a port 2-2 enabling a switch 2-2 enabling interoperability mode 12-5 enabling licensed features C-1 enabling trunking 9-4 end-to-end monitoring 8-3 end-to-end monitors adding 8-4 clearing counters 8-9 deleting 8-9 displaying 8-7 displaying the mask 8-7 restoring configuration 8-14 saving configuration 8-14 setting a mask 8-6 event 16-15 speed negotiation 16-35 Events Descriptions 16-16 example chassishow 1-11 configupload 1-15 ctin event 16-83 ELS 16-53 fabricshow 1-12 HA 1-11 nsallshow 1-13 routing frame 16-59 slotshow 1-11 trunking frame 16-61 zoning request 16-68 External Link Services (SW ILS) 16-57

F

F_BSY Frame (RCTL = C5 or C6) 16-114 F_BSY Reason Code 16-116 F_RJT and N_RJT Frames 16-114 Fabric Configuration Server 16-92

fabric configurations additional 1-11 fabric connectivity 1-12 fabric controller address 16-141 Fabric Internal FC-CT Commands 16-89 Fabric Segmentation Reason Details for Port 16-78 fabric service reject reason code explanation 16-76 fabric services 16-75 command codes 16-76 fabric segmentation reason for port 16-78 reject reason codes 16-76 Fabric Zone Server(ZS) 16-106 Reject CT IU Reason Codes Explanations 16-110 request command codes 16-107 fabricshow command 1-12 FAN Frame 16-122 FAOs 9-7 FC CT Command Restrictions 16-86 FC PH frame Cross-References 16-19 Definitions 16-20 FC-4 Type Code 16-90 FC-CT Command/Response 16-90 Definitions 16-82 Frame 16-81 Header Usage 16-81 Respond Command 16-87 Type of FC-CT Header Usage 16-81, 16-129 FC-CT Respond Command Optional Field 16-83 FC-PH Reject Reason Code 16-49 FC-SW (SW-RJT) Reject Reason Explanation Codes 16-59 Fibre Channel Common Transport Protocol 16-80 Fibre Channel Service Responds (FC RJT) Reason Code Explanation 16-90 filter-based monitoring 8-9 filter-based monitors adding 8-10 clearing counters 8-14 deleting 8-13 displaying 8-13 restoring configuration 8-14 saving configuration 8-14 Flags Field Bit Map 16-127

forcing in-order delivery of frames 2-21 Frame 16-22 Frame Control (F_CTL) 16-22 diagram 16-22 FRU failures, monitoring 11-17

G

generating batch of licenses 1-8 GS_Subtype 16-82 GS_Type 16-82

Η

HA 1-11 example 1-11 hashow command 1-11 Hi-Availability (HA) 1-11 HLO Request Frame 16-127

I

I/O Control (ioctl) 16-36 identifying IDID Mode-enabled switches 11-10 port swapping nodes 11-14 ports from the tag field B-1 ports that have completed RNID exchange 11-15 IDID Mode enabling and disabling 11-8 identifying enabled switches 11-10 IN ID 16-82 Internal State Change Notification 16-26 Internal State Change Notification (SCN) 16-26, 16-28 interoperability mode 12-1 interopmode 12-1 IOCTL CTL Code 16-37 ISL Flow Control Mode Values 16-79 ISL Miscellaneous 16-79

L

LED state values 16-33 license key activating 1-9 license keys generating 1-8 verify 1-9 licenseadd command 1-9 licensed features 1-8 licenseshow command 1-9, 1-10 LIFA, LIPA, LIHA and LISA 16-122 Link Control 16-113 Link Control Frame Code 16-116 F BSY Reason Code 16-116 F RJT and N RJT Action and Reason Codes 16-117 P BSY Action and Reason Codes 16-117 Link Control Headers F RJT and N RJT Frames 16-114 link incidents displaying 11-11 displaying registered listeners for 11-12 Link State Descriptor 16-128 Record Header Format 16-128 Link State Record Header 16-128 LIRP and LILP frames 16-123 LISM Frame 16-122 logging into a switch 15-8 login switch 1-1 LSA Request Frame 16-128 LSU Request Frame 16-127

Μ

Management Server 16-92 Fabric Configuration Server 16-92 reason code and explanation 16-92 mask for end-to-end monitors displaying 8-7 setting 8-6 modify members, alias 10-3, 10-4, 10-6, 10-7, 10-9, 10-10 monitoring FRU failures 11-17

Ν

name server command codes 16-88 Objects 16-91 Port Type 16-90 query with FC-4 Features 16-85 query with IP 16-85 query with node names 16-84 query with port name 16-84 query with port type 16-85 registration 16-85 request types 16-89 Name Server Command Codes command codes name server 16-84 No Operation (NOP) 16-115 node identification data, displaying 11-12 nsallshow command 1-13 NSS_CT Command/Response Code 16-92 nsshow command 1-13 nternal 16-26

0

Originator_ID (OX_ID) 16-23

Ρ

P_BSY Action and Reason Codes 16-117 UI Frame (RCTL = C4) 16-115 passwords recovering forgotten passwords 3-18 Payload Information 16-119 SW_ELS Payload Frame 16-119 perfAddEEMonitor command 8-4 perfAddIPMonitor command 8-10 perfAddUserMonitor command 8-10 perfCfgRestore command 8-14 perfCfgSave command 8-14 perfCfgSave command 8-14 perfClrAlpaCrc command 8-3 perfDelEEMonitor command 8-9 perfDelFilterMonitor command 8-13

perfSetPortEEMask command 8-6 perfShowAlpaCRC command 8-2 perfShowEEMonitor command 8-7 perfShowFilterMonitor command 8-13 perfShowPortEEMask command 8-7 port enabling or disabling for trunking 9-4 port physical state 16-33 port swapping 2-12 disabling 11-16 enabling 11-16 port swapping nodes, identifying 11-14 portlogdump Anchor (diagram) 16-7 ports, swapping 11-16 portswap 2-12 portswapenable 2-12 portswapshow 2-12 power off a blade 5-4 power on a blade 5-4 principal ISL 9-7

Q

Query With FC-4 Features (name server) 16-85 Query With IP name server 16-85 query with IP port 16-85 Query With IP Port - name server 16-85 Query With Node Name name server 16-84 Query with Port name name server 16-84 Query With Port Type 16-85

R

R_CTL Information 16-20 R_RJT and N_RJT Action and Reason Codes 16-117 RCTL = C0 16-113 RDI Accept Frame 16-126 Request Frame 16-126 reading hexidecimal port diagrams 2-27 reason code explanation CT IU 16-110 FC RJT 16-90 reason codes Zoning (NZ) 16-65 zoning transaction abort 16-66 References 16-1 Register State Change Notification (RSCN) 16-26 Registration (name server) 16-85 Reject Frame for ABTS 16-116 reject reason code (NS_RJT) 16-90 ABTS 16-119 FC-PH 16-49 reject reason code explanation ABTS 16-119 fabric services 16-76 FC-SW (SW-RJT) 16-59 reject reason codes fabric services 16-76 removing end-to-end monitors 8-9 filter-based monitors 8-13 Request Code (FC-GS-1) - Alias Service 16-111 request codes zoning exchange 16-63 request command codes zs 16-107 request types name server 16-89 Responder ID (RX ID) 16-23 restoring monitor configuration 8-14 restoring the system configuration settings 2-11 Routing Control Bits (R CTL) 16-20 Routing Frame Example 16-59 RSCN Frame 16-122 running diagnostic tests on the switch hardware 14-17

S

saving monitor configuration 8-14 SCN Definitions 16-26 SCR frame 16-121 Sequence Count (SEQ_CNT) 16-23 Sequence ID (SEQ_ID) 16-23

Server-to-server protocol Data Unit Command/Response Code 16-91 setting mask for end-to-end monitors 8-6 setting the switch date and time 2-6simple name server address 16-141 slot and port syntax 5-1 slotshow command 1-11 Specific Opcode 16-66 Configuration Operations 16-67 SW_ILS 16-66 speed negotiation 16-35 code command 16-35 distance code values 16-36 event 16-35 I/O Control (ioctl) 16-36 State Values 16-35 speed negotiation code command 16-35 Stage Change Registration (SCR) 16-26 standard filter-based monitors 8-10 State Change Notification (SCN) 16-26 state values speed negotiation 16-35 Summary routing frame 16-60 summary management server 16-106 trunking example 16-62 zone request 16-70 SW ELS Acceptance Frame 16-119 ADISC Frame 16-120 FAN Frame 16-122 LIFA, LIPA, LIHA and LISA Frames 16-122 LIRP and LILP Frames 16-123 LISM Frame 16-122 N Port Logout Frame 16-120 PRLI and PRLO Frames 16-121 Rejection Frame 16-120, 16-121 RSCN Frame 16-122 SCR Frame 16-121 SW ELS Payload Frame 16-119 SW ILS 16-54 swapping area IDs 2-12 swapping ports 11-16 switch beacon mode 14-11 switch config backup 1-13 switch configuration settings 11-3

Switch Fabric Internal Link Services Acceptance Frame 16-123 BF (Build Fabric) Frame 16-126 DIA Accept Frame 16-125 DIA Request Frame 16-125 Domain ID list format 16-125 ELP Accept Frame 16-124 ELP Request Frame 16-124 Flags Field Bit Map 16-127 FSPF Header Format 16-127 HLO Request Frame 16-127 Link State Descriptor 16-128 Link State Record Header Format 16-128 LSA Request Frame 16-128 LSU Request Frame 16-127 Multicast ID List Format Multicast ID list format 16-125 RCF Frame 16-126 RDI Accept Frame 16-126 RDI Request Frame 16-126 Reject Frame 16-123 Switch Fabric Internal Link Services (SW ILS) 16-54 command code 16-56 Payload Frame 16-123 Switch Names 1-7 switch parameter meanings 16-34 switch WWN 14-11 Switch Priority Field Values 16-79 switched point-to-point configuration 11-4 switches, configuring 11-3 switchshow command 1-11

Т

tag field, interpreting B-1 task 16-12 Task Descriptions 16-13 time 16-12 time server address 16-141 troubleshooting 11-18 trunking debugging 9-7 disabling 9-4 displaying information 9-6 enabling 9-4 Trunking Frame example 16-61 Trunking Support Code (SW_ILS) 16-57 type code 16-24 TZone 16-65

U

upgrading the firmware level in v4.0 4-6, 5-2 user ID 1-2 user-defined filter-based monitors 8-11

V

valid AL_PA addresses 16-142 verify device connectivity 1-12 fabric connectivity 1-12 hi-availability (HA) 1-11 viewing the policy threshold values 2-16

W

well known address 16-141 Well_Known Ordered Sets 16-139 WWNs, port 9-6

Ζ

Zone Error (tzone- reject 16-68 Object Types 16-67 Zoning (NZ) 16-65 Operation Request Values 16-65 reason codes 16-65 Request Codes for Zoning Exchange 16-63 Transaction Abort Reason Codes 16-66 Zoning Server 16-65 Zoning Request example 16-68